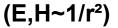

Радиосистема EasySens

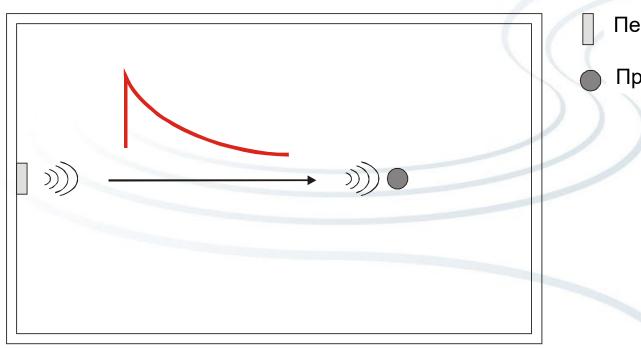
Введение

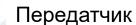
Для создания стабильной радиосистемы необходимо анализировать и учитывать особенности зданий.

- Путь сигнала
 - поглощение и отражение радио сигнала
 - Строительные материалы
 - Мебель
 - Места размещения передатчиков и приёмников
- Датчики на солнечных батареях
 - Освещённость на месте монтажа
 - Дневной / искусственный свет
 - Затенённость



Роспространение радиоволн




радиоволн убывает обратнопропорционально Энергия квадрату расстояния от передатчика до приёмника.

Приёмник

Поглощение радиоволн Различные материалы

Радиоволны могут проходить через стены с различной степенью их поглощения.

Примеры для различных видов стен:

• Дерево, гипс 90...100% проницаемость материала

• Кирпич 65...95% проницаемость материала

• Бетон армированный 10...90% проницаемость материала

• Металл, алюминиевые покрытия 0...10% проницаемость материала

Поглощение радиоволн - дополнительные факторы

Дополнительные факторы, негативно влияющие на радиосигнал:

- Фольгированная звукоизоляция
- Плёнка для пароизоляции

- Свинцовое стекло или стекло с металлическим покрытием
- Мебель из металла

• Монтаж датчиков и выключателей на металлических стенах

Радиус действия – ориентировочные значения

Строительные материалы играют очень важную роль при оценке радиуса действия радиосигнала.

Ориентировочные значения для радиуса действия:

• Прямая видимость : Тур. 30 m в коридорах

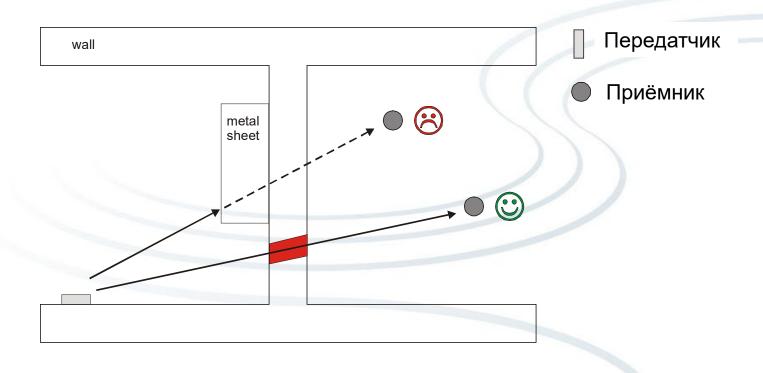
Тур. 100 m в павильонах

• Гипсовые / деревянные стены: Тур. 25 m максимум через 4 стены

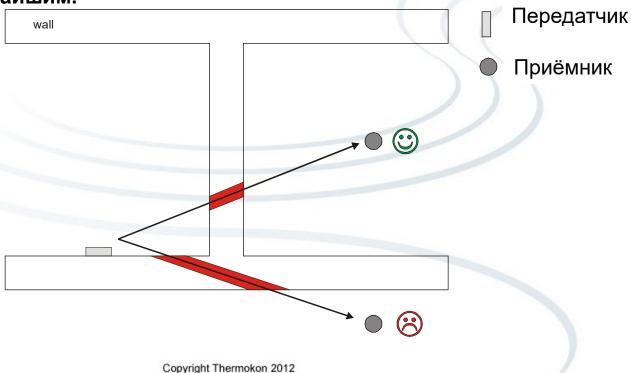
• Кирпич / строительный блок : Тур. 15 m максимум через 2 стены

• Железобетонные стены / потолки: Тур. 10 m максимум через 1 стену

Радиус действия – зона неуверенного приёма сигнала



Распределительные щиты и шахты для лифта должны рассматриваться как препятствия, поглощающие радиосигнал

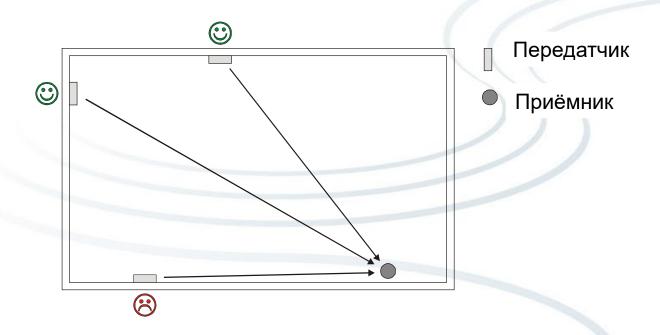


Эффективная толщина стены

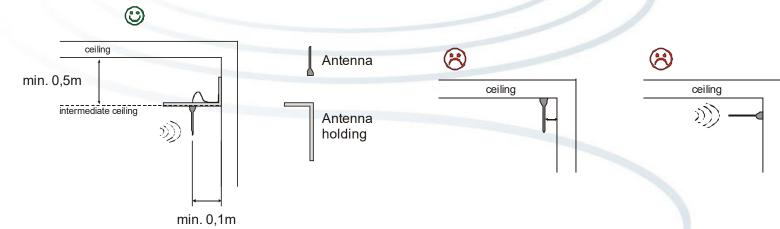
Эффективная толщина стены, равно как и поглощение радиосигнала, изменяются в зависимости от угла проникновения радиосигнала

- Радиосигнал должен проходить через стену под прямым углом.
- Пройденный путь радиосигнала внутри стены должен быть наикратчайшим.

Приёмные устройства с внутренней антенной


Устройства с внутренней антенной должны монтироваться на противоположных и прилегающих стенах.

• При монтаже приёмного устройства желательно избегать ту стену, на которой установлен передатчик.



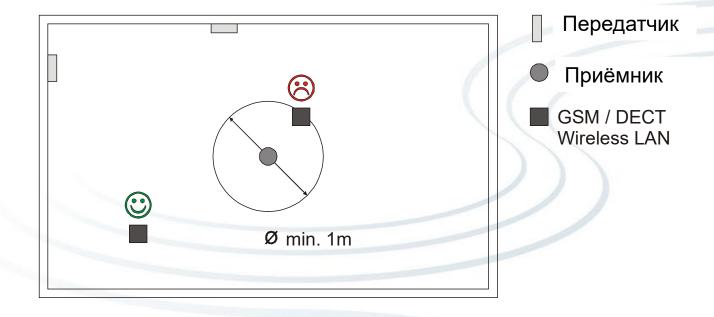
Приёмные устройства с внешней антенной

Идеальным местом для монтажа внешней антенны является центр помещения.

- Минимальное расстояние от стены 10см, от потолка 50 см
- Антенна должна находиться в вертикальном положении
- Монтаж на ферромагнитной металлической плате 18 х 18 ст
- Для избежания отражённого сигнала кабель антенны не должен быть согнут.

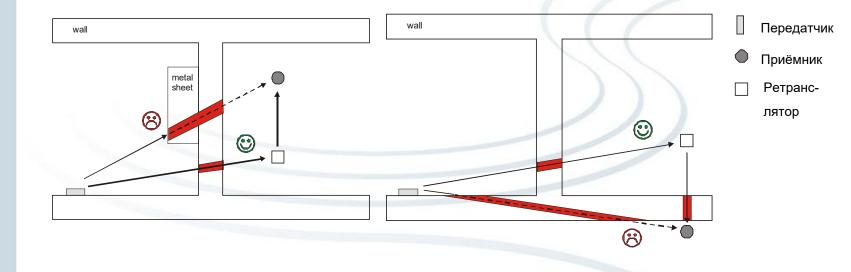
Copyright Thermokon 2012

Расстояние до других помехосоздающих устройств



Расстояние до других передающих устройств (GSM / DECT / Wireless LAN) должно составлять не менее 0,5 m.

Repeater - ретрансляторы


При проблемах с получением качественного радиосигнала могут быть использованы ретрансляторы.

• Во время планирования необходимо заранее предусмотреть возможность использования ретранслятора.

ЕРМ300 – устройство для измерения качества радиосигнала

ЕРМ300 помогает планировщикам и монтажникам в поиске оптимальных мест для монтажа передатчиков и приёмников.

- Проверка и наладка уже установленных устройств
- Индикация мощности принимаемого радиосигнала
- Индикация помех в диапазоне 868 МНz

Принцип работы:

- Один человек посылает радиотелеграмму нажатием кнопки на передатчике.
- Другой следит за качеством принимаемого радиосигнала и определяет, таким образом, оптимальное место для монтажа.

Позиционирование датчиков на солнечных батареях

При выборе места монтажа для датчиков на солнечных батареях необходимо придерживаться определённых правил:

- Минимальная освещённость 150lx на протяжении 3-4 часов в день
- Избегать прямого и постоянного солнечного света
- Избегать тёмные помещения

- Датчики такого рода должны быть направлены в сторону окна
- Избегать затемнения датчика
- Во время монтажа проверять освещённость при помощи Люксметра

Дневной и искусственный свет

AUTO 0

Солнечные батареи выдают различные значения, в зависимости от источника света

- Наилучшим источником света для солнечной батареи является дневной
- свет (широкий диапазон световых волн)
 Искусственный источник света даёт меньше энергии солнечной батарее

(узкий диапазон световых волн)

- При одинаковой освещённости дневной свет даёт больше энергии на 25-100%, чем искусственный свет
- Малое количество дневного света в зимний период
 - → Предусмотреть освещённость от искусственного источника света
- Горизонтальное расположение солнечной батареи по отношению к свету → получаемая энергия в
- 3 раза больше, по сравнению с вертикальным расположением

Типичная освещённость

Степень типичной освещённости помещений.

Школы

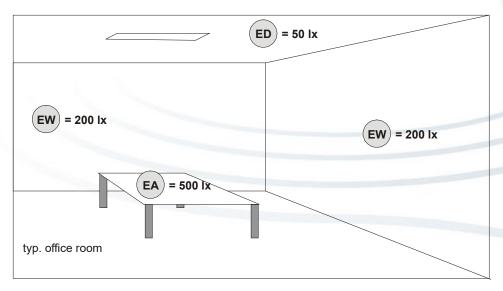
• Классная доска	500 - <i>'</i>	1000	ĺΧ
• Общие помещения	300 -	500 l	lx

Офисные помещения

• Рабочии стол	200 -	500 IX
• Комната для конференций	300 -	700 lx
• Коридор	50 -	100 lx

Гостиницы

• Регистрация	300 - 700 lx
• Ресторан	150 - 300 lx
• Постыичная плошалка	50 - 150 ly


Распределение света в помещении

Между центром помещения и её стенами могут быть значительные расхождения в интенсивности освещения.

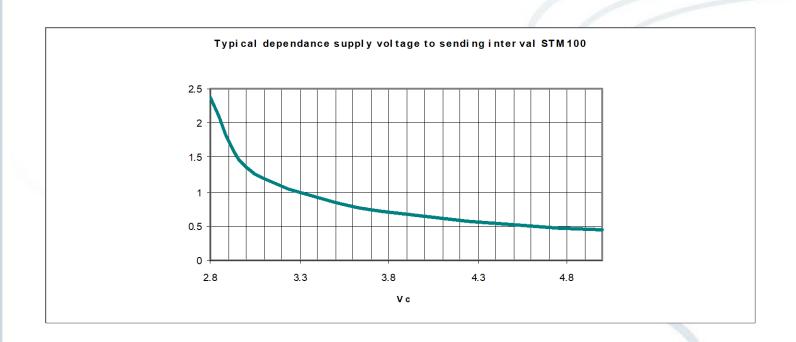
Факторы влияния

- Строительный материал
- Цвет стен и мебели, находящейся в помещении

Важно:

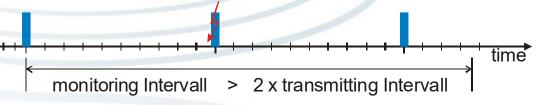
Сравнительные измерения Люксметром должны проводиться непосредственно на месте монтажа

Интервалы передачи данных



Предписанная освещённость датчика заряжает внутренний аккумулятор до 3,3 вольт.

Слежение за стабильностью работы радиосистемы


При помощи приёмного устройства можно следить за интервалами передачи данных.

- Наблюдение за стабильностью радиоканала
- Интервал передачи данных зависит от
 - Изменения измерительных значений
 - Степени зарядки внутреннего аккумулятора
- Пример для стандартных настроек:
 - Интервал передачи данных при различных напряжениях
 - 2,9 Вольт ==> примерно 1600 секунд ≈ 27 минут 3,3 Вольт ==> примерно 1000 секунд ≈ 16 минут
 - 3,8 Вольт ==>

примерно 700 секунд ≈ 12 минут

Пример слежения за радиосистемой

Интервала времени слежения за передающим устройство большим чем 2x27 минут вполне достаточно для того, что бы отслеживать работоспособность и устойчивость радиосистемы. В случае, если от передающего устройства в течении одно часа не поступила радиотелеграмма, то такое устройство считается вышедшем из строя.

Наши координаты

Thermokon Sensortechnik GmbH

Казахстан, Алматы

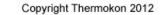
Tel.: + 7 727 3670713 +7 727 2960172

EMail: 3670713@mail.ru

Internet: www.atp.kz

Гербер Даниил Яковлевич

Представитель Thermokon в странах восточной Европы


Tel.: +49 6409 3300 700

Fax.: +49 6409 3300 709

EMail: d.herber@thermokon.su

Internet: http://www.thermokon.su

