D SERIES MODULAR AIR-COOLED SCROLL CHILLERS SERVICE MANUAL T1/R410A/50Hz (GC201307-I) GREE ELECTRIC APPLIANCES, INC.OF ZHUHAI # **CONTENTS** | PRODUCT | 2 | |---------------------------------|----| | 1 LINEUP | 2 | | 2 NOMENCLATURE | 2 | | 3 FEATURES | 3 | | 4 PRODUCT DATA | 4 | | 5 OPERATION PRINCIPLE | 6 | | CONTROL | 8 | | 1 OPERATION FLOWCHART | 8 | | 2 CONTROL LOGIC | 10 | | 3 CONTROLLER | 12 | | NSTALLATION | 17 | | 1 BEFORE INSTALLATION | 17 | | 2 INSTALLATION LOCATION | 17 | | 3 CAUTION FOR INSTALLATION | 17 | | 4 DIMENSION DATA | 17 | | 5 MACHINE FOOTPRINT | 19 | | 6 TYPICAL WATER PIPING DIAGRAM | 20 | | 7 FREEZE PROTECTION | 21 | | 8 ELECTRIC WIRING WORK | 21 | | MAINTENANCE | 28 | | 1 ERROR LIST | 28 | | 2 FLOW CHART OF TROUBLESHOOTING | 29 | | 3 REMOVALS AND REINSTALLATION | 34 | | 4 ROUTINE MAINTENANCE | 48 | | 5 EXPLODED VIEWS AND PART LIST | 50 | # **PRODUCT** # 'n # **PRODUCT** # 1 LINEUP | Series | Model Name | Product Capacity (kW/Ton) | | | Power Refrigerant | | Appearance | | | | | | |--------|------------------|---------------------------|-----------|------------|-------------------|----------|------------|----------|--------|--|--|--| | | | Code | Cooling | Heating | Supply | 3 | | | | | | | | | LSQWRF65M/NaD-M | EL01500500 | 60/17.06 | 65/18.48 | 380-415V,3Ph,50Hz | | | | | | | | | D | LSQWRF80M/NaD-M | EL01500520 | 71/20.19 | 79.5/22.61 | | B4104 | 9 9 | | | | | | | | LSQWRF130M/NaD-M | EL01500510 | 120/34.12 | 130/36.97 | | 3Ph,50Hz | 3Ph,50Hz | 8Ph,50Hz | N4 IUA | | | | | | LSQWRF160M/NaD-M | EL01500530 | 145/41.23 | 170/48.34 | | | • • | | | | | | Note:1Ton =12000Btu/h = 3.517kW # **2 NOMENCLATURE** | LS | QW | R | F | 130 | М | / | Na | D | - | М | |----|----|---|---|-----|---|---|----|---|---|---| | 1 | 2 | 3 | 4 | 5 | 6 | | 7 | 8 | | 9 | | NO. | Items | Options | |-----|--------------------------|---| | 1 | Product type | LS- chillers | | 2 | Compressor type | QW- hermetic scroll compressors | | 3 | Function type | Default-cooling only
R-heat pump | | 4 | Condenser type | F: air-cooled | | 5 | Nominal cooling capacity | 65:60kW= 17.06 RT
80:71kW=20.19 RT
130:120kW=34.12 RT
160:145kW=41.23 RT | | 6 | Structural design | M-modular design | | 7 | Refrigerant | Default-R22
Na-R410A | | 8 | Development number | _ | | 9 | Power supply | M – 380-415V,3Ph,50Hz | #### 3 FEATURES #### 3.1 General D series modular air-cooled scroll chillers are well-developed products incorporated with multiple advanced technologies. It features the low noise level, compact structure, easy operation, reliable running, and convenient installation and service, widely used at newly built or retrofitted industrial and civil buildings in various sizes, such as, hotels, apartments, restaurants, office buildings, shopping malls, theaters, gyms, workshops, hospitals and other places where there are high requirements on noise level and air quality but it is troublesome to install the cooling tower. D series modular air-cooled scroll chillers are constructed of one or up to 16 single units which may vary in structure and in cooling capacity. The 65, 80 units have two independent refrigeration cycle and the 130,160 units have four. The modular design is able to realize the modular system with the cooling capacity ranging from 60 to 1160kW. #### 3.2 Features D series modular air-cooled scroll chillers work outstandingly by virtue of their major features stated below. - ◆ High energy efficiency: It is initially certified as one of the energy-saving chiller products in China. - ◆ Free master unit design: Any single unit can operate as the master once connected with the control panel. It overcomes the problem which would occur to the product of other manufacturer that the whole system would fail to work properly when the fixed master unit malfunctions. - ◆ Excellent compatibility: Each chiller is constructed of up to 16 single units of 65NaD,80NaD or up to 8 single units of 130NaD,160NaD. - Hermetic scroll compressor: Compared with other type of compressor under the same cooling load, it has few movable components, smaller rotating torque, lower noise and vibration and higher reliability and efficiency. - ◆ Super protection: It is equipped with the top-end microcomputer control system which is capable of providing well-rounded protection and self-diagnosis, such as high/low pressure protection, freeze protection, over-temperature protection, compressor overload protection, phase loss/reversal protection, water flow switch protection, etc. - ◆ High reliability: It is constructed of well-designed refrigeration parts for multiple refrigeration cycles, adequately guaranteeing the reliable operation. - ◆ Compact structure: The modular design enables the compact structure, reduced volume, light weight, easy handling and shipping and flexible installation. - ◆ Low maintenance cost: The especially design structure allows easy access and service and low maintenance cost. - ◆ Low noise: The unit runs with low noise and vibration, widely applicable for various projects. - ◆ Quiet mode: The unit is allowed to run in the quiet mode based on the user's requirement, which can not only save energy but also create a comfortable and pleasant living environment. - ◆ **Economy mode**: The unit can run in the economy mode without lessening the air conditioning effect so as to cut down the electricity consumption. - ◆ Equilibrium running: Tt indicates each compressor will run alternately so as to extend their service life. - ◆ Powerful remote monitoring: Gree centralized air conditioning system can be perfectly integrated to the BMS or Gree remote monitoring system so as to realize remote control to its operation and remote monitoring to its running parameters and alarm data etc. Wiring Drawing between Modules ♦ Intelligent ON/OFF control: The unit is capable of automatically turning on/off the compressor through controlling the entering water temperature and the temperature rise rate in accordance with the change in load so as to make the capacity of the unit perfectly match the required load and reduce to the most extent the electricity consumption and effectively avoid remarkable temperature fluctuation. ### **4 PRODUCT DATA** #### 4.1 Product Data at Rated Condition | Models | | Heat
Pump | LSQWRF65M/NaD-M | LSQWRF80M/NaD-M | LSQWRF130M/NaD-M | LSQWRF160M/NaD- | | | |------------------|---|-----------------|--------------------------|----------------------|---------------------------|-----------------------|--|--| | IVI | oueis | Product
Code | EL01500500 | EL01500520 | EL01500510 | EL01500530 | | | | Сара | city steps | % | 0-50-100 | 0-50-100 | 0-25-50-75-100 | 0-25-50-75-100 | | | | | 0 1 | kW | 60 | 71 | 120 | 145 | | | | 0 " | Cooling | Ton | 17.06 | 20.19 | 34.12 | 41.23 | | | | Capacity | | kW | 65 | 79.5 | 130 | 170 | | | | | Heating | Ton | 18.48 | 22.61 | 36.97 | 48.34 | | | | | Cooling | kW | 21.1 | 25.7 | 42.3 | 53.0 | | | | Power Input | Heating | kW | 21.0 | 27.0 | 44.4 | 56.0 | | | | | EER | W/W | 2.84 | 2.76 | 2.84 | 2.74 | | | | (| COP | W/W | 3.09 | 2.94 | 2.93 | 3.04 | | | | Powe | er Supply | _ | | 380-415V | /,3Ph,50Hz | | | | | | ng Control | | Microcompu | | Status Display; Abnormal | Status Alarm | | | | | | | | | rotection, motor overload | | | | | Sa | afeties | _ | | | , compressor overload pr | | | | | | Туре | _ | | Constant S | peed Scroll | | | | | Compressor | Starting mode | _ | | Direct | starting | | | | | | Quantity | _ | 2 | 2 | 4 | 4 | | | | Refrige | erant Type | _ | | R4 | 10A | | | | | Туре | | _ | Dry Expansion Evaporator | | | | | | | | Water flow | m³/h | 10.3 | 12.2 | 20.6 | 24.9 | | | | | volume | GPM | 45.0 | 54.0 | 91.0 | 110.0 | | | | Water side | | kPa | 15 | 20 | 30 | 35 | | | | heat | Pressure Drop | ft.WG | 4.92 | 6.56 | 9.84 | 11.48 | | | | exchanger | Max. working
Pressure | MPa | 1 | | | | | | | | water in/outlet
pipe flange
specification | mm | DN65 DN65 | | DN80 | DN80 | | | | | Туре | _ | | Aluminum Fir | n-copper Tube | | | | | | Fan type/
Number of fans | _ | Axial Fan/2 | Axial Fan/2 | Axial Fan/4 | Axial Fan/4 | | | | Air side heat | | m³/h | 2.7×10 ⁴ | 3.0×10⁴ | 5.4×10 ⁴ | 6.0×10 ⁴ | | | | exchanger | Total fan air flow | L/s | 0.75×10 ⁴ | 0.83×10 ⁴ | 1.5×10 ⁴ | 1.67×10 ⁴ | | | | | | CFM | 1.59×10 ⁴ | 1.764×104 | 3.18×10⁴ | 3.528×10 ⁴ | | | | | Total fan
motor power | kW | 0.65×2 | 0.95×2 | 0.65×4 | 0.95×2 | | | | Sound p | ressure level | dB(A) | 70 | 71 | 72 | 74 | | | | | Width | mm | 2040 | 2040 | 2226 | 2226 | | | | Outline | Depth | mm | 1000 | 1000 | 1650 | 1650 | | | | Dimension - | Height | mm | 2230 | 2230 | 2230 | 2230 | | | | Net Weights | | kg | 710 | 760 | 1256 | 1440 | | | | | ting weight | kg | 781 | 836 | 1382 | 1584 | | | | Auxiliary e | electric heater-
er (Ref.) | kW | 15 | 15 | 30 | 30 | | | | Loading quantity | 40'GP/40'HQ | _ | 10/10 | 10/10 | 6/6 | 6/6 | | | ### Notes: - a.The unit is designed, manufactured, inspected and tested in accordance with GB/T18430.1-2007. - b.Parameters on the nameplate always take precedence. - c. Consult the local sales agency concerning special requirements and we will go to the length of figuring out the most feasible solution. #### 4.2 Nominal capacities are based on the follow conditions: | | Wate | r side | Air side | | | |---------|-------------------|---------------------------|----------------|----------------|--| | Item | Water flow volume | Leaving Water Temperature | Dry-bull temp. | Wet-bull temp. | | | | m³/(h·kw) | (°C / °F) | (°C / °F) | (°C / °F) | | | Cooling | 0.472 | 7/45 | 35/95 | _ | | | Heating | 0.172 | 45/113 | 7/45 | 6/43 | | #### 4.3 Operation Range | | Wate | Air side | | |---------|---------------------------|---------------------------------|------------------| | | Leaving Water Temperature | Temperature Difference of Water |
Air on Condenser | | | (°C / °F) | (°C / °F) | (°C / °F) | | Cooling | 5~15/41~59 | 2.5~6/37~43 | 15~45/59~113 | | Heating | 40~50/104~122 | 2.5~6/37~43 | -15~24/5~75 | Note: when the unit is going to operate beyond the working conditions, please contact Gree for consultation. #### 4.4 Electric Data | | | | Compressor | | Fan I | Air Switch | | |------------------|--------------------|-----|-----------------|-----------------|-------|-----------------|------------| | Model | Rated Power Supply | Qty | MRC Each
(A) | NRC Each
(A) | Qty. | NRC Each
(A) | MRC
(A) | | LSQWRF65M/NaD-M | | 2 | 29.1 | 17.6 | 2 | 1.71 | 63 | | LSQWRF80M/NaD-M | 200 445V 2Db 50U- | 2 | 29.3 | 25.7 | 2 | 2.50 | 80 | | LSQWRF130M/NaD-M | 380-415V,3Ph,50Hz | 4 | 29.1 | 17.6 | 4 | 1.71 | 125 | | LSQWRF160M/NaD-M | | 4 | 35 | 25.7 | 4 | 2.50 | 160 | Notes: MRC: Maximum running current (A). NRC: Nominal running current (A). TOO "Everest climate" г. Алматы, Варламова 1а, тел. +7 727 230 00 10, e-mail: info@aircon.kz, сайт: www.aircon.kz #### **5 OPERATION PRINCIPLE** #### 5.1 Schematic Diagram Each circuit of the modular chiller is independent and identical and herein only a circuit is taken for an example. - ◆ Refrigeration Cycle: The low-pressure superheated refrigerant vapor from the evaporator is drawn into the compressor through which the low-pressure vapor is compressed to hi-temperature and hi-pressure refrigerant vapor. Then, the refrigerant vapor passes the condenser and turns to saturated or subcooled refrigerant liquid. And then, it passes the throttling device and flows into the evaporator where it evaporates by absorbing heat from the second refrigerant and then is drawn into the compressor again. The second refrigerant is then transferred to where air cooling is required. - ◆ Reverse Refrigeration Cycle: During the reverse refrigeration cycle, a 4-way valve is used to make the refrigerant flow in a reverse direction as stated below. The hi-temperature and hi-pressure refrigerant vapor coming out from the compressor directly releases heat to the secondary refrigerant and turns to the refrigeration liquid. Then, the refrigerant vapor passes the throttling device and flows into the aircooled exchanger where it evaporates by absorbing heat from the surrounding environment and then is drawn into the compressor again. The second refrigerant which has approached the temperature set point is then transferred to where air heating is required. # CONTROL #### **CONTROL** #### 1 OPERATION FLOWCHART #### 1.1 Cooling Operation #### 1.2 Heating Operation #### 2 CONTROL LOGIC #### 2.1 Cooling Control #### 2.1.1 Control to the Compressor ### (1). "First On, First Off" "First On, First Off"/"First Off, First On" control indicates the numbered compressor which is started/stopped firstly will then be stopped/started firstly. #### (2). Temperature Drop/Rise Rate Control The water temperature range control assisted by the temperature drop/rise rate control is capable of precisely adapting the load change of the terminal units and avoiding remarkable water temperature fluctuation. #### 2.1.2 Freeze Protection For each single module, when the anti-freezing temperature or the leaving water temperature is lower than the limit value, freeze protection will work and this module stops; when the anti-freezing temperature and the leaving water temperature go higher than the normal value, freeze protection will quit; when the anti-freezing temperature and the leaving water temperature are between the limit value and the normal value, the module is protected again freeze. #### 2.1.3 Shutdown Shutdown manually or timely: in this case, the compressor and the auxiliary electric heater stop firstly, then the electronic expansion valve initializes, and then the 4-way valve is de-energized, and lastly the water pump stops. Shutdown when reaching the set point: in this case, the compressor stops firstly, and then the fan stops and the electronic expansion valve initializes. However, the 4-way valve keeps its state unchanged and the water pump keeps running. Shutdown due to errors: in this case, the compressor stops firstly, and then the fan stops (except that the fan is malfunctioning), and the electronic expansion valve initializes. However, the 4-way valve keeps its state unchanged and the water pump keeps running. #### 2.2 Heating Control #### 2.2.1 Control on the Compressor It is the same as that in selection 2.1.1. #### 2.2.2 Over-temperature Protection For each single module, when the over-temperature is higher than the limit value, over-temperature protection will work; when the over-temperature goes lower than the normal value, over-temperature protection will quit; when the over-temperature is between the limit value and the normal value, the module is still protected again over-temperature. #### 2.2.3 Control on the Auxiliary Electric Heater When the auxiliary electric heater is enabled through the wired controller, it will work in accordance with the change of the entering water temperature. When the flow switch and the entering water temperature sensors work normally, any other error can be ignored. When the auxiliary electric heater is disabled through the wired controller, the auxiliary electric heater will stop working. When all entering water temperature sensors malfunction, the auxiliary electric heater will stop working. When any flow switch malfunctions, the auxiliary electric heater will stop working. When the unit is under over-temperature protection but the auxiliary electric heater is not allowed to stop, the auxiliary electric heater will keep working until the entering water temperature reaches the set point. #### 2.2.4 Shutdown Shutdown manually or timely: in this case, the compressor and the auxiliary electric heater stop firstly, then the electronic expansion valve initializes, and then the 4-way valve is de-energized, and lastly the water pump stops. Shutdown when reaching the set point: in this case, the compressor stops firstly, and then the fan stops and the electronic expansion valve initializes. However, the 4-way valve keeps its state unchanged and the water pump keeps running. Shutdown due to errors: in this case, the compressor stops firstly, and then the fan stops (except that the fan is malfunctioning), and the electronic expansion valve initializes. However, the 4-way valve keeps its state unchanged and the water pump keeps running. #### 2.3 Freeze Protection Under the OFF state at any mode (except the manual defrosting mode), when the freeze protection is activated through the wired controller, the unit will be protected again freeze. Free protection is factory defaulted to be ON. When the module is in the freeze protection, its compressor will work as per the on/off setting and also the principle of "Six-minute On, Thee-minute Off". #### 2.4 Control to the Compressor All compressors run as per the principle of "First On, First Off" and "First Off, First On". See section 2.1 and section 2.2. #### 2.5 Control to the Fan The fan starts earlier than the compressor upon startup, and stops later than the compressor upon shutdown. During defrosting, the fan and the 4-way valve stops. After defrosting they start again. #### 2.6 Control to the 4-way Valve The 4-way valve is stopped at the cooling mode. At the heating mode, it will start after the compressor runs. During defrosting it stops and then starts again after defrosting. It will stop later than the compressor upon shutdown. #### 2.7 Control to the Water Pump When any module is required to run (incl. manual startup, timely startup, startup again freeze), water pumps of all module starts. Then, when one module reaches the set point and is shut down, water pumps of all modules keep running; when one module is shut down manually or timely, its water pump keeps running and will stop only after all modules are shut down; when one module malfunctions and is shutdown, its water pump keeps running. #### 2.8 Control to the Electronic Expansion Valve The electronic expansion valve initialize when the wired controller is emerged for the first time. After the compressor has been started, the electronic expansion valve starts to adjust its opening angle. #### 2.9 Protection #### 2.9.1 Recoverable Protection ◆ Compressor 1/2 low pressure protection When it is detected the low-pressure switch of compressor 1 (compressor 2) is opened compressor 1 (compressor 2) will be shut down immediately. Meanwhile the indicating LED will light on and the error information will be displayed among the error log which must be manually cleared for normal operation of next time. ◆ Compressor 1/2 high discharge protection When it is detected in three consecutive seconds that the discharge temperature of compressor 1 (compressor 2) exceeds the set point, compressor 1 (compressor 2) will be shut down immediately but the fan will still run for some time. Meanwhile the indicating LED will light on and the error information will be displayed among the error log which must be manually cleared for normal operation of next time. #### 2.9.2 Irrecoverable Protection ◆ Compressor 1/2 high pressure or over-current protection When it is detected that the high pressure switch of compressor 1 (or compressor 2) is open, compressor 1 (or compressor 2) will be shut down but the fan will still last for some time. Meanwhile the indicating LED will light on and the error information will be displayed among the error log which must be manually cleared for normal operation of next time. #### ◆ Fan 1/2 over-current protection When any fan is over-current, this module unit will be shut down automatically. Meanwhile, the error information will be displayed among the error log which must be manually cleared for normal operation of next time. #### ◆ Flow switch protection When a single module unit detect that the flow switch is closed (under normal condition, it keeps open), it will be shut down automatically. When all
modules are shut down because of flow switch protection, the water pump will stop. #### ◆ Communication protection When a single module unit fails to receive any signal from the wired controller, it will be shut down automatically and then the water pump will stop. #### ◆ Phase loss/reversal protection When phase loss/reversal occurs, the power supply to the main board will be cut off. #### 3 CONTROLLER #### 3.1 Wired Controller This wired controller, especially designed for D series modular air-cooled chillers, is capable of controlling and displaying each running parameter of the chiller and being integrated into the remote monitoring system. #### 3.1.1 Press Buttons and Icons on the Homepage #### (1). Press Buttons | NO. | Name | Function description | | | | |-----|---|--|--|--|--| | 1 | Power indicator(red) | the indicator is on when the Wired Controller is powered on, or otherwise it is off. | | | | | 2 | Run indicator(green) | the indicator is on when the Wired Controller is started, or otherwise it is off. | | | | | 3 | Error indicator(red) | The indicator is on when the unit is at fault, or otherwise it is off. | | | | | 4 | On/Off button | For controlling unit conversion between start and stop, press the button (for 3 seconds) in stop state to start the unit and press the button (for 3 seconds) in operation state to stop the unit. | | | | | 5 | Reset button | utton Press the button to clear fault and relieve the air discharge temperature sensor locking. | | | | | 6 | Up selection button | in menu selection, press the button to move the cursor upward or leftward; and in data modification mode, press the button to increase the value. | | | | | 7 | Down selection button | In menu selection, press the button to move the cursor downward or rightward; and in data modification mode, press the button to decrease the value. | | | | | 8 | Exit button | Press the button to go back to the previous menu. | | | | | 9 | Confirm button In menu selection, press the button to confirm the selected item; and in data modification mode, press the button to confirm the parameter and move the cursor. | | | | | | 10 | LCD | Information display zone. | | | | #### (2). Display Icons on the Homepage | No. | Icon | Description | | |------------------------------------|--------------|---|--| | 1 | Time | It indicates the current time. | | | 2 | Unit name | It indicates the unit name. | | | 3 | Running mode | It indicates the running mode (cooling, heating or manual defrosting) | | | 4 | On/Off mode | It indicate the on/off mode, manual or timing) | | | 5 Running status It indicates the | | It indicates the running status, on or off. | | | 6 Module quantity It indicates how | | It indicates how many modules this system is consisted of. (max. 16) | | # - #### 3.1.2 Menu Structure of Controller Four bit toggle switches are used for indicating hardware address (1~16) of modules, with module No. displayed in turn on the panel as Module 1, Module 2,, Module 16. Toggle switches 1, 2, 3 and 4 are binary code, with 1 for the lowest bit and 4 for the highest bit. Comparison drawings are as follows (Caution: The DIP switch is allowed to be set only when the power supply is cut off and each setting shall be unique.): Module1 ON 3 2 Module2 ON 1 2 3 4 # **INSTALLATION** ### **NSTALLATION** #### 1 BEFORE INSTALLATION - Please check the attached documents for the unit and accessories in accordance with the packing list. - ◆ Check the model and specification in accordance with attached documents. - Check the unit and accessories for damage - ◆ Check the refrigerant charge for leakage - ◆ Check the cleanliness of the water pipes. Do not remove the protective cap of the flange before connecting water pipes. - ♦ Check installation and operation for compliance with the required range. Through the check above, if there is any damage or problem, please contact the local sales office for help. Note that protective measures shall be taken after unpacked product has gone through all check and do not remove the package too early to avoid any unexpected damage to the product. #### 2 INSTALLATION LOCATION In order to guarantee the unit operates normally, installation shall be performed by the skilled serviceman with enough knowledge of refrigeration and air conditioning. Please read this manual carefully before instillation. - ◆ The unit shall be installed outdoor where there is good ventilation and capable of withstand the weight of the unit. - ♦ Enough space around the unit shall be left for ventilation, operation and service. - ◆ No obstacle is allowed above the unit. - ◆ The drainage ditch shall be prepared. #### **3 CAUTION FOR INSTALLATION** - ◆ Ensure the connection pipe and power line both are routed correctly. - ♦ Noise and vibration levels shall be among the reliable range, rubber cushion shall be adopted. - ◆ The base must be constructed of cement or steel, which can bear the operation weight of the machine and has a level surface. - ◆ The installation location shall be free from fire, flammable matters, corrosive gas or waste gas. Enough ventilation space shall be left and measures should be taken to reduce noise and vibration as much as possible. #### **4 DIMENSION DATA** (1). Graph for the shape and size for LSQWRF65M/NaD-M, LSQWRF80M/NaD-M Unit:mm Unit:mm (3). Graph for the shape and size for LSQWRF160M/NaD-M #### **5 MACHINE FOOTPRINT** A minimum spacing of 1m should be left between any two modules for unobstructed air intake and equipment service. Additionally, a minimum of 2m should be kept between the chiller and any barrier. If allowable, it would be better to set up a suncover 3m ahead of the chiller. Unit:mm Rubber cushion pad shall be attached under the unit base which shall be fixed on the foundation with bolts. #### **6 TYPICAL WATER PIPING DIAGRAM** #### 7 FREEZE PROTECTION When the flow passage of the shell-and-tube heat exchanger is frozen up, it would cause serious damage to the heat exchanger, such as cracking and leakage which are out of warranty, therefore, the user should take measures stated below for freeze protection. - ◆ Under subzero conditions, it is necessary to shut down the chiller installed outdoor and then drain the evaporator completely. - ◆ Failure of the chilled water flow switch and the anti-freezing temperature sensor will cause the tube frozen up, so the flow switch shall be interlocked with the chiller. - When charging or recovering the refrigerant, the evaporator would crack because of frostbite provided the refrigerant pressure inside the evaporator is under 0.71MPa. Therefore, be sure to keep the water flow continually inside the evaporator or drain it completely. #### **8 ELECTRIC WIRING WORK** #### 8.1 Wiring Principle - ◆ All wiring shall comply with applicable codes and engineering requirements. - ◆ All field wiring shall be performed by the qualified electrician. - ◆ Never perform wiring before the power supply is cut off. - ◆ Any damage caused by the improper external wiring shall be at the installer's expense. WARNING: only copper conductor is allowed. - (1). Power Cord Routing into the Electric Box - ◆ The power cord is wired into the internal electric box. - ◆ The power cord must be routed inside the conduit. - ◆ The power cord must enter the electric box through a rubber or plastic ring to avoid any damaged caused by the sharp edge of the metal sheet. - ◆ The power cord close to the electric box must be attached securely to prevent the terminal block of the electric box affected by the outside force. - (2). Control Line - ◆ The field supplied control line shall be at a minimum 1mm². - ◆ What the flow switch receives is the DC low-voltage signals. The wiring of the flow switch shall not be parallel with the 50V or higher line. If inevitable, the hi-voltage and low-voltage signals must keep a distance of at least 150mm. - ◆ The electric box will send the control signal (220 AC, 5A) to control the chilled water pump and auxiliary electric heater, however, never do not drive them directly through the control signal but through their AC contactors. - ◆ A reasonable length of the control line should be left outside the unit and the rest should be bundled and fed into the electric box. #### 8.2 Wiring between Chiller Modules #### 8.3 Specification of Power Cord and Air Switch | Model | Dower Supply | Min. sectional | area of the power | Capability of the | | | |------------------|-------------------|----------------|-------------------|-------------------|---------------|--| | Model | Power Supply | Live Line | Neutral Line | Earth Line | Air Switch(A) | | | LSQWRF65M/NaD-M | | 16 | 4 | 16 | 63 | | | LSQWRF80M/NaD-M | 380-415V,3Ph,50Hz | 25 | 4 | 16 | 80 | | | LSQWRF130M/NaD-M | | 50 | 4 | 25 | 125 | | | LSQWRF160M/NaD-M | | 70 | 4 | 35 | 160 | | #### Notes: - a. The specifications of the minimal size of the neural line should be 4mm², that is, the selected size of the neutral line should be equal to or larger than 4mm². - b. The specifications of the breaker and power cable listed in the table above are determined based on the maximum power (maximum amps) of the unit. - c. The specifications of the power cable listed in the table above are applied to the conduit-guarded multi-wire copper cable (like, JYV copper cable, consisting of PV insulated wires and a PVC cable jacket) used at 40 °C and resistible to 90 °C (see IEC60364-5-523:1999). If the working condition changes, they should be modified according to the related national standard. - d. The specifications of
the breaker listed in the table above are applied to the breaker with the working temperature at 40° C. If the working condition changes, they should be modified according to the related national standard. #### **8.4 WIRING DIADRAM** #### (1). LSQWRF65M/NaD-M The diagram is only for reference and the circuit diagram attached on the unit prevails. #### (2). LSQWRF80M/NaD-M The diagram is only for reference and the circuit diagram attached on the unit prevails. #### (3). LSQWRF130M/NaD-M The diagram is only for reference and the circuit diagram attached on the unit prevails # (4). LSQWRF160M/NaD-M # **MAINTENANCE** # **MAINTENANCE** # **1 ERROR LIST** | Error | Rated Element | Protection Logic | |--|---------------------------------|--| | High-pressure protection | High pressure switch | When the pressure is too high or the current exceeds the set point, the corresponding compressor will stop and the indicating LED on the controll panel will light on and the | | Compressor over-
current protection | Over-current protector | error information will be displayed on the error log which must be manually cleared for normal operation of next time. | | Low pressure protection | Low-pressure switch | When it is detected the low-pressure switch of the compressor is opened frequently, the compressor will be shut down immediately. Meanwhile, the error information will be displayed among the error log which must be manually cleared for normal operation of next time. | | High discharge protection | Discharge
temperature sensor | When it is detected in three consecutive seconds that the discharge temperature exceeds the set point, the compressor will be shut down immediately. Meanwhile, the error information will be displayed among the error log which must be manually cleared for normal operation of next time. | | Fan over-current protection | Fan over-current protector | When a fan is over-current, the corresponding unit will be shut down. Meanwhile, the error information will be displayed among the error log which must be manually cleared for normal operation of next time. | | Temperature
sensor protection | Temperature sensor | When an entering water temperature sensor fails, the compressor of the corresponding module will be shut down immediately while the fan will still run for some time. When a discharge temperature sensor fails, or the sensed discharge temperature is always below the set point, the compressor of the corresponding module will be shut down immediately. It can recover in three seconds but If the same case occurs more than three times, the system will be locked until the system is unlocked and then it should be manually cleared for normal operation of next time. When the anti-freezing temperature sensor or the leaving water temperature sensor fails, it can be automatically cleared as the temperature sensor automatically recover. But if the same case occurs three times in one hour or the temperature sensor fails to recover, it should be manually cleared for normal operation of next time. Meanwhile, the indicating LED on the controll panel will light on and the error information will be displayed on the error log. | | Water flow switch protection | Contactor | When a single module detects its flow switch is closed, this module will automatically be shut down. When all flow switches are closed, the water pump will stop. | | Phase loss/reversal protection | Phase protector | When phase loss/reversal occurs, the phase protector will cut off the power supply to the main board. | | Communication error | Main board | When the single module fails to receive signals from the controll panel, it will automatically be shut off. | #### **2 FLOW CHART OF TROUBLESHOOTING** #### (1). High pressure protection # (2). Low pressure protection #### (3). High discharge protection #### D Series Modular Air-cooled Scroll Chillers Service Manual #### (4). Compressor over-load protection #### (5). Phase protection #### (6). Water flow switch protection #### (7). Temperature sensor error ### **3 REMOVALS AND REINSTALLATION** #### 3.1 MAIN PARTS | 3.1 MAIN PARTS Appearance | Name | Function | |----------------------------|--------------------------------------|---| | | Compressor | It drives the refrigerant cycle and turns the low-temperature, low pressure refrigerant vapor into high-temperature, high-pressure vapor. | | | Accumulator | It is used to separate oil and refrigerant liquid from the refrigerant vapor. | | | 4-way Valve | It is used to shift the direction of the refrigerant flow to realize either cooling or heating. | | 4 | Shell-and-
tube heat
exchanger | In the cooling mode, it is used to absorb heat and evaporate the liquid refrigerant In the heating mode, it is used to release heat and condense the refrigerant vapor. | | | Fintube heat
exchanger | In the cooling mode, it is used to absorb heat and evaporate the liquid refrigerant In the heating mode, it is used to release heat and condense the refrigerant vapor. | | | Electronic
expansion
valve | It is used to regulate the flow rate of the refrigerant to make it perfectly match with the load in need. | ### 3.2 Removal and Installation of Main Parts # Compressor (These steps listed below are applicable to the dual-system unit. For the four-system unit, please first remove the electric boxes of two compressors in between and then follow the steps below.) | Note: Be sure there is no refrigerant in the pipeline system and the power supply is cut off. | | | |---|--|---| | Steps | Graphic Reprentation | Instructions | | 1. Remove
the panel | Remove the panel here | Loosen screws around the panel with screwdriver. Remove the panel. Collect the screws in case of loss. Place the panel in the right place to avoi inadvertent damage. | | 2. Remove
the power
cord and
drain pipe | Remove the drain pipe Open the cover and remove the power cord | Loosen screws for the power cord with screwdriver. Draw out the power cord. Remove the crankcase heater, if applicable Remove the drain pipe. Note: when removing the power cord, mathe color of the power cord and the code the wring terminal to avoid misconnection. | | 3. Separate the compressor from the pipeline system | Soldering spot | Unbraze the brazing spots of the pipelir as quick as possible. Minimize damage on the compressor f further analysis. | Note: after the compressor is replaced, most amount of oil will still remain in the system, which will not affect the reliability of the newly installed compressor but will increase the running resistance to the rotor and increase electricity consumption. Therefore, a valve should be installed at the lower part of the inlet of the suction line to discharge excessive oil. After installing the valve, start the compressor for ten minutes and then open this valve until all oil flows out completely. Do it twice to guarantee the oil keeps at the normal level. | 4-way Valve | | | | | |--|---|---|--|--| | | Note: Be sure to cut off the power supply and recover the refrigerant firstly | | | | | Steps | Graphic Representation | Instructions | | | | 1. Record the installation direction of the 4-way valve | 4-way valve | Remember the installation direction of the 4-way valve before removal. Remove the coil. Wrap the 4-way valve prior to unbrazing to prevent it from being damaged and use it for future analysis. Unbraze the 4-way valve. | | | | 2. Clean
the system,
replace
the 4-way
valve and
reconnect
the pipeline
as before | Remove the 4-way valve and clean the system | Replace the 4-way valve with the same model, or that approved by the qualified
technician. Wrap the 4-way valve with wet cloth. Reconnect the connection pipe as before. Braze the pipeline. Charge nitroge when unbrazing. | | | | 3. Vacuum
the system
and charge
refrigerant
again | | ◆ Vacuum the system until the pressure goes as low as -1.0bar. ◆ The refrigerant charge and quality shall comply with the specification on the nameplate. | | | | Accumulator | | | |--|---|--| | | Note: Be sure to recover the refrigerant, prepare proper devices and tool | s and keep a good ventilation. | | Steps | Graphic Representation | Instructions | | 1. Remove
the panel as
shown in the
right figure | panels | ◆ Remove the panel as shown in the left figure with a screwdriver. | | 2. Disconnect
the
connection
pipe of the
accumulator | accumulator | ◆ Unbrazer the connection pipe of the accumulator. | | 3. Remove
the 4-way
valve
assembly if
necessary | 4-way valve assemly | ◆ Unbraze the 4-way valve assembly. | # Shell-and-tube Heat Exchanger Note: Check the water system and be sure the shell-and-tube heat exchanger shall be replaced. And then cut off the power and recover the refrigerant. Steps **Graphic Representation** Instructions 1. Remove ◆ Remove four panels around the heat the panel as exchanger and the frame in front of the shown in the blind plug. right figure 2. Loosen the pipeline ◆ Remove the pipeline connectors ◆ Remove the metal sheets located and remove underside with a screwdriver. the panel ◆ Loosen the blind plug and drain the water outside of inside the pipeline. the heat exchanger Blind plug 3. Unbraze the pipeline connecting the heat exchanger. (Different heat Wrap the cooper pipe with wet cloth. exchangers ◆ Unbraze the pipelines connecting the heat vary in exchanger. structure so it is better to remember the piping location to prevent misconnection 4. Place a new heat exchanger and vacuum the system and then charge refrigerant and lastly put the fan and metal sheets back - ◆ Install a new heat exchanger. - Braze the pipeline. - ◆ Vacuum the system until the pressure is as low as -1.0bar. - ♦ The refrigerant charge and quality shall comply with the specification on the nameplate. Take care to the wiring sequence when rewiring the fan motor. #### Electornic Expansion Valve Note: check the refrigeration system and be sure the electronic expansion valve shall be replaced, and then cut off the power supply and recover the refrigerant. | recover the refri | Graphic Representation | Instructions | | |--|----------------------------|--|--| | 1. Recover
the refrigerant
and remove
the panel | Electronic expansion valve | ◆ Cut off the power supply ◆ Recover the refrigerant. ◆ Remove the panel. | | | 2. Remove
the electronic
expansion
valve coil. | Coil | ◆ Wrap the valve with wet close to prevent the slide block from being burnt down and never the let water flow into the pipeline. | | #### **4 ROUTINE MAINTENANCE** Routine maintenance shall be performed by the skilled and qualified servicemen. #### (1). Refrigerant Leakage Suds is usually used for the leakage test by applying it at the spot (soldering spots, valve pistols, connectors) where leakage is probably to occur. During the test, if soap bubbles pop up, it indicates leakage exists and repair is required. If suds fails to work, a electronic leakage detectors is a alternative. Refrigerant charge can be checked by measuring the suction and discharge pressure. Leakage test should be performed wherever leakage occurs or some components of the refrigeration system are replaced. There are two difference conditions for charging refrigeration stated as below. #### Complete charging In this case, take a leakage test by charging hi-pressure nitrogen (15~20kg) or refrigerant into the system. If soldering is required, note that gas inside the system must be expelled firstly. The whole system must be dried and vacuumed prior to charging. - a. Connect the manifold gage. - b. Vacuum the system with a vacuum pump. - Step 1: Expel the hi-pressure nitrogen for leakage test. Step 2: Connect the pipeline at both the high and low pressure sides of the manifold gage as shown in the figure below. Note that vacuuming shall be taken at both sides. The degree of vacuum will refer to the reading of the manometer at the low side. - Step 3: Open the valves at both the high-pressure and low-pressure sides and then start the vacuum pump until the gage reading is below -1bar. After that, let the vacuum pump lasts for another 0.5~1.0 hour. - Step 4: Close the valves and stop the vacuum pump. Note that only the valves have been closed can the vacuum pump be stopped, otherwise air is possible to go into the system again. - Step 5: Take the leakage test. Be sure the vacuumed system keeps a pressure no higher than 80Pa and keeps little pressure rise in half an hour. - c. Refrigerant charging starts after the degree of vacuum reaches the expected range and lasts for 30 minutes. The amount of refrigerant charge shall comply with that specified on the nameplate or product data sheet. - Adding Refrigerant charge is determined through stringent tests, as excess or shortage of refrigerant would cause the compressor to run improperly. Thus, the refrigerant charge shall be consistent with that specified on the nameplate. If refrigerant charge is indeed insufficient, follow the steps below for adding. - Step 1: Weigh the refrigerant tank with an electronic scale and connect the refrigerant tank with the pressure gage through the pipeline. - Step 2: Expel the air inside the pipeline. Firstly half open the shutoff valve of the refrigerant tank and then loosen the connector connecting the pressure gage to expel the air until the connector hisses for five seconds and then tighten the connector. - Step 3: Return the electric scale to zero by energizing it again. - Step 4: Open all valves between the refrigerant tank and the unit to charge refrigerant as per the amount specified on the nameplate. Excessive refrigerant would dilute oil while insufficient refrigerant would lower the refrigeration capability and result in poor lubrication and high discharge temperature etc. Note that only refrigerant vapor can be charged into the system at the low-pressure side when the unit is in operation. However, it is highly recommended to charge refrigerant at the hi-pressure side when the unit is shut down, otherwise it would cause slugging during startup. ### (2). Air Purge Prior to refrigerant charging, it is imperative to expel air inside the system and the system must be vacuumed. - a. Connect the manifold gage. - b. Vacuum the system with a vacuum pump. - c. Charge refrigerant at the low-pressure side as per the amount specified on the nameplate or product data sheet when the degree of vacuum appro aches the expected range. - d. The refrigerant charge will be affected by the ambient temperature. When the charge is under the required amount, it is allowed to add refrigerant vapor after starting the water pump and the unit. # **5 EXPLODED VIEWS AND PART LIST** (1). Model: LSQWRF65M/NaD-M # Parts List: LSQWRF65M/NaD-M for EL01500500 | No. | Name of part | Part code | |-----|-------------------------------|----------------| | 1 | Electric Expand Valve Fitting | 4304413214 | | 2 | Strainer | 07210037 | | 3 | Magnet Coil | 4300040064 | | 4 | Filter | 07218603 | | 5 | Condenser Assy | 0112110001001 | | 6 | Rear Panel | 0154110000101P | | 7 | Sensor Sub-assy | 39008000004G | | 8 | One Way Valve | 0733420001 | | 9 | pipe connector | 06128301 | | 10 | Pressure Protect Switch | 4602001570 | | 11 | Pressure Protect Switch | 4602001581 | | 12 | Pressure Protect Switch | 4602001583 | | 13 | Dry Evaporator | 0105887701 | | 14 | Base Frame Assy | 01281100012P | | 15 | Steam current Switch | 45028209 | | 16 | Gas-liquid Separator | 07424148 | | 17 | Electrical Heater | 76515211 | | 18 | Pressure Protect Switch | 4602001569 | | 19 | Pressure Protect Switch | 4602001579 | | 20 | Compressor | 00201100002 | | 21 | Pressure Protect Switch | 4602001582 | | 22 | Compressor Gasket | 02118049 | | 23 | Electronic Expansion Valve | 07331139 | | 24 | Electric Expand Valve Fitting | 4304413213 | | 25 | Magnet Coil | 4300040048 | | 26 | 4-way Valve | 43000339 | | 27 | Front Panel | 01541100003P | | 28 | Front Panel | 01541100002P | | 29 | Streamlined Dome | 22265801 | | 30 | Centrifugal Fan | 10355801 | | 31 | Fan Motor | 1570110000101 | | 32 | Electric Box Assy | 01391100045 | | 33 | Terminal Board | 42018452 | | 34 | Terminal Board | 42011135 | | 35 | Over Current Protector | 46028000011 | | 36 | Terminal Board | 420102471 | | 37 | Phase Reverse Protector | 32214101 | | 38 | Single-phase Air Switch | 45020203 | | 39 | AC Contactor | 44010235 | | 40 | AC Contactor | 44010229 | | 41 | Main Board | 30222000002 | # (2). Model: LSQWRF80M/NaD-M # Parts List: LSQWRF80M/NaD-M for EL01500520 | No. | | | |
---|-----|-------------------------------|--------------| | 2 Electronic Expansion Valve 07331139 | No. | Name of part | Part code | | 3 | 1 | Electric Expand Valve Fitting | 4304413213 | | 4 4-way Valve 4300412 5 Filter 07414118 6 Pressure Protect Switch 4602001570 7 Pressure Protect Switch 4602001579 8 Pressure Protect Switch 4602001579 9 Rear Panel 01541100001P 10 One Way Valve 0733420001 11 Sensor Sub-assy 3000000004G 12 pipe connector 06123801 13 Compressor 00201100004 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Healer 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001581 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 4Magnet Coil 430004048 25 Condenser Assy 01121100020 26 Front Panel 01541100002P 27 Front Panel 01541100003P 28 Stramlined Dome 22265801 30 Fan Motor 15701100003 31 Electric Based 4201135 33 AC Contactor 44010229 34 Terminal Board 42011435 35 Single-phase Air Switch 45020003 36 Terminal Board 4201240 37 AC Contactor 44010240 38 Phase Reverse Protector 4602800010 | 2 | Electronic Expansion Valve | 07331139 | | Filter | 3 | Magnet Coil | 4300040064 | | 6 Pressure Protect Switch 4602001570 7 Pressure Protect Switch 4602001582 8 Pressure Protect Switch 4602001579 9 Rear Panel 01541100001P 10 One Way Valve 0733420001 11 Sensor Sub-assy 39006000004G 112 pipe connector 06128301 13 Compressor 00201100004 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 0118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 430040048 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 0154110003P 27 Front Panel 0154110003P 28 Streamlined Dome 22266801 29 Centrifugal Fan 103558001 30 Fan Motor 1570110003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 4201135 35 Single-phase Air Switch 450200010 | 4 | 4-way Valve | 43000412 | | 7 Pressure Protect Switch 4602001582 8 Pressure Protect Switch 4602001579 9 Rear Panel 01541100001P 10 One Way Valve 0733420001 11 Sensor Sub-assy 3900000004G 11 Pipe connector 06128301 13 Compressor 00201100004 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 75515211 19 Pressure Protect Switch 4602001581 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100003P 27 Front Panel 01541100003P 28 Streamlined Dome 22265901 29 Centrifugal Fan 10355801 30 Fan Motor 1570110003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 450200010 | 5 | Filter | 07414118 | | 8 Pressure Protect Switch 4602001579 9 Rear Panel 01541100001P 10 One Way Valve 0733420001 11 Sensor Sub-assy 390080000045 12 pipe connector 06128301 13 Compressor 00201100004 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 75515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001581 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100002P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Expand Valve Fitting 42014452 33 AC Contactor 44010229 34 Terminal Board 42018452 35 Gingle-phase Air Switch 45020033 36 Phase Reverse Protector 32214101 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 | 6 | Pressure Protect Switch | 4602001570 | | 9 Rear Panel 01541100001P 10 One Way Valve 0733420001 11 Sensor Sub-assy 39008000004G 12 pipe connector 06128301 13 Compressor 020201100004 14 Dry Evaporator 00201100004 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100003P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355601 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42018452 35 Single-phase Air Switch 45020013 | 7 | Pressure Protect Switch | 4602001582 | | 10 One Way Valve 0733420001 11 Sensor Sub-assy 39008000004G 12 pipe connector 06128301 13 Compressor 00201100004 14 Dry Evaporator 101658800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001581 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100002P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 4201135 35 Single-phase Air Switch 45028000010 | 8 | Pressure Protect Switch | 4602001579 | | 11 Sensor Sub-assy 3900000004G 12 pipe connector 06128301 13 Compressor 00201100004 14 Dry Evaporator 01658800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001583 21 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001589 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 < | 9 | Rear Panel | 01541100001P | | 12 | 10 | One Way Valve | 0733420001 | | 13 Compressor 00201100004 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 46020015869 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Strainel 000000000000000000000000000000000000 | 11 | Sensor Sub-assy | 39008000004G | | 14 Dry Evaporator 01058800057 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 0154110003P 27 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 1570110003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 | 12 | pipe connector | 06128301 | | 15 Steam current Switch 45028209 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 | 13 | Compressor | 00201100004 | | 16 Gas-liquid Separator 07421111 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001569 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29
Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 | 14 | Dry Evaporator | 01058800057 | | 17 Compressor Gasket 02118049 18 Electrical Heater 76515211 19 Pressure Protect Switch 4602001583 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 | 15 | Steam current Switch | 45028209 | | 18 | 16 | Gas-liquid Separator | 07421111 | | 19 | 17 | Compressor Gasket | 02118049 | | 20 Pressure Protect Switch 4602001581 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 430040048 25 Condenser Assy 01121100020 26 Front Panel 0154110003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 18 | Electrical Heater | 76515211 | | 21 Pressure Protect Switch 4602001569 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 19 | Pressure Protect Switch | 4602001583 | | 22 Strainer 07210037 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 20 | Pressure Protect Switch | 4602001581 | | 23 Electric Expand Valve Fitting 4304413214 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100002P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 21 | Pressure Protect Switch | 4602001569 | | 24 Magnet Coil 4300040048 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 22 | Strainer | 07210037 | | 25 Condenser Assy 01121100020 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 23 | Electric Expand Valve Fitting | 4304413214 | | 26 Front Panel 01541100003P 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 24 | Magnet Coil | 4300040048 | | 27 Front Panel 01541100002P 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 25 | Condenser Assy | 01121100020 | | 28 Streamlined Dome 22265801 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 26 | Front Panel | 01541100003P | | 29 Centrifugal Fan 10355801 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 27 | Front Panel | 01541100002P | | 30 Fan Motor 15701100003 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 28 | Streamlined Dome | 22265801 | | 31 Electric Box Assy 01391100061 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 29 | Centrifugal Fan | 10355801 | | 32 Terminal Board 42018452 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 30 | Fan Motor | 15701100003 | | 33 AC Contactor 44010229 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 31 | Electric Box Assy | 01391100061 | | 34 Terminal Board 42011135 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 32 | Terminal Board | 42018452 | | 35 Single-phase Air Switch 45020203 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 33 | AC Contactor | 44010229 | | 36 Terminal Board 420102471 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 34 | Terminal Board | 42011135 | | 37 AC Contactor 44010240 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 35 | Single-phase Air Switch | 45020203 | | 38 Phase Reverse Protector 32214101 39 Over Current Protector 46028000010 | 36 | Terminal Board | 420102471 | | 39 Over Current Protector 46028000010 | 37 | AC Contactor | 44010240 | | | 38 | Phase Reverse Protector | 32214101 | | 40 Main Board 30222000002 | 39 | Over Current Protector | 46028000010 | | | 40 | Main Board | 30222000002 | # (3). Model: LSQWRF130M/NaD-M ### Parts List: LSQWRF130M/NaD-M for EL01500510 | No. | Name of part | Part code | |-----|-------------------------------|-------------------------------| | 1 | Rear Grill | 01571100001 | | 2 | Condenser Assy 1 | 01371100001 | | 3 | • | 0154110001101
01541100005P | | | Lower panel | | | 4 | 4-way Valve | 43000339 | | 5 | Electric Expand Valve Fitting | 4304413214 | | 6 | Filter | 07218603 | | 7 | Electronic Expansion Valve | 07331139 | | 8 | Condenser Assy 2 | 0112110001201 | | 9 | Lower panel | 01541100006P | | 10 | Lower panel | 01541100007P | | 11 | Sensor Sub-assy | 39008000003G | | 12 | One Way Valve | 07332224 | | 13 | Chassis Sub-assy | 01191100004P | | 14 | Dry Evaporator | 01058800013 | | 15 | Pressure Protect Switch | 4602001570 | | 16 | Pressure Protect Switch | 4602001584 | | 17 | Pressure Protect Switch | 4602001585 | | 18 | Steam current Switch | 45028209 | | 19 | Compressor | 00201100002 | | 20 | Gas-liquid Separator | 07424148 | | 21 | Compressor Gasket | 02118049 | | 22 | Pressure Protect Switch | 4602001582 | | 23 | Pressure Protect Switch | 4602001579 | | 24 | Electrical Heater | 76515211 | | 25 | pipe connector | 06128301 | | 26 | Pressure Protect Switch | 4602001547 | | 27 | Strainer | 07210037 | | 28 | Electric Expand Valve Fitting | 4304413213 | | 29 | Magnet Coil | 4300040048 | | 30 | Magnet Coil | 4300040049 | | 31 | Lower panel | 01541100004P | | 32 | Side Plate | 01311100006P | | 33 | Streamlined Dome | 22265801 | | 34 | Centrifugal Fan | 10355801 | | 35 | Fan Motor | 15701100001 | | 36 | Terminal Board | 420111251 | | 37 | AC Contactor | 44010235 | | 38 | Terminal Board | 42010247 | | 39 | Terminal Board | 42010254 | | 40
| Terminal Board | 42011135 | | 41 | Over Current Protector | 46028000011 | | 42 | Terminal Board | 42018452 | | 43 | Main Board | 30222000002 | | 44 | Electric Box Assy | 01391100047 | | 45 | AC Contactor | 44010229 | | 46 | | 45020203 | | | Single-phase Air Switch | | | 47 | Phase Reverse Protector | 32214101 | # (4). Model: LSQWRF160M/NaD-M # Parts List: LSQWRF130M/NaD-M for EL01500530 | No. | Name of part | Part code | |-----|-------------------------------|---------------| | 1 | Condenser assy 2 | 0112110002501 | | 2 | Rear Grill | 01571100001 | | 3 | Electric Expand Valve Fitting | 4304413213 | | 4 | Magnet Coil | 4300040049 | | 5 | 4-Way Valve | 43000412 | | 6 | Electronic Expansion Valve | 07331139 | | 7 | Filter | 07414118 | | 8 | Pressure Protect Switch | 4602001570 | | 9 | Condenser assy 1 | 0112110002601 | | 10 | Lower Panel 3 | 01541100082P | | 11 | Lower Panel 4 | 01541100047P | | 12 | Sensor Sub-assy | 39008000046G | | 13 | One Way Valve | 0733420001 | | 14 | Pressure Protect Switch | 4602001579 | | 15 | Pressure Protect Switch | 4602001582 | | 16 | Dry Evaporator | 01058800064 | | 17 | Gas-liquid Separator | 07421111 | | 18 | Pressure Protect Switch | 4602001591 | | 19 | Pressure Protect Switch | 4602001590 | | 20 | Steam current Switch | 45028209 | | 21 | Pressure Protect Switch | 4602001583 | | 22 | Electrical Heater | 76515211 | | 23 | Pressure Protect Switch | 4602001581 | | 24 | Compressor | 00201100004 | | 25 | Compressor Gasket | 02118049 | | 26 | Chassis Sub-assy | 01191100011P | | 27 | pipe connector | 06128301 | | 28 | Pressure Protect Switch | 4602001569 | | 29 | Strainer | 07210037 | | 30 | Lower Panel | 01541100067P | | 31 | Pressure Protect Switch | 4602001589 | | 32 | Electric Expand Valve Fitting | 4304413214 | | 33 | Magnet Coil | 4300040048 | | 34 | Handle | 26235253 | | 35 | Lower Panel 1 | 01541100053P | | 36 | Side Plate | 0134110003F | | 37 | Scram switch | 45010024 | | 38 | Streamlined Dome | 22265801 | | 39 | Fan Motor | 15701100003 | | 40 | Centrifugal Fan | 10355801 | | 41 | Fan Motor | 1570110000301 | | 42 | Terminal Board | 420111251 | | | | | | 43 | Electric Cabinet Assy | 01391100069 | | | Terminal Board | 42010254 | | 45 | Terminal Board | 42010247 | | 46 | Terminal Board | 42011135 | | 47 | AC Contactor | 44010229 | | 48 | Terminal Board | 42018452 | | 49 | Main Board | 30222000002 | | 50 | AC Contactor | 44010240 | | 51 | Phase Reverse Protector | 32214101 | | 52 | Single-phase Air Switch | 45020203 | | 53 | Over Current Protector | 46028000008 | # GREE ELECTRIC APPLIANCES, INC. OF ZHUHAI Add: West Jinji Rd, Qianshan, Zhuhai, Guangdong, China, 519070 Tel: (+86-756) 8522218 Fax: (+86-756) 8669426 E-mail: gree@gree.com.cn www.gree.com For continuous improvement in the products, Gree reserves the right to modidy the product specification and appearance in this manual without notice and without incurring any obligations.