LCD Temperature/Humidity Controllers

TH4M Series

PRODUCT MANUAL

For your safety, read and follow the considerations written in the instruction manual, other manuals and Autonics website.
The specifications, dimensions, etc are subject to change without notice for product improvement Some models may be discontinued without notice

Features

- Simultaneous control of temperature and humidity
- LCD display with easy-to-read white and blue characters
- Input correction of temperature and humidity
- Output delay time setting
- Deviation high/low-limit alarm output
- Dedicated temperature/humidity sensor THD-RM (accessory)

Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards.
- \triangle symbol indicates caution due to special circumstances in which hazards may occur.

§ Warning Failure to follow instructions may result in serious injury or death

1. Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss.(e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.) Failure to follow this instruction may result in personal injury, economic loss or fire.
2. Do not use the unit in the place where flammable/explosive/corrosive gas, high humidity, direct sunlight, radiant heat, vibration, impact or salinity may be present.
Failure to follow this instruction may result in explosion or fire.
3. Install on a device panel to use.

Failure to follow this instruction may result in fire or electric shock.
04. Do not connect, repair, or inspect the unit while connected to a power source.
Failure to follow this instruction may result in fire or electric shock.
05. Check 'Connections' before wiring.

Failure to follow this instruction may result in fire.
06. Do not disassemble or modify the unit.

Failure to follow this instruction may result in fire or electric shock.

§ Caution Failure to follow instructions may result in injury or product damage

1. When connecting the power input and relay output, use AWG $20\left(0.50 \mathrm{~mm}^{2}\right)$ cable or over, and tighten the terminal screw with a tightening torque of 0.74 to 0.90 Nm .
When connecting the sensor input and communication cable without dedicated cable, use AWG 28 to 16 cable and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m .
Failure to follow this instruction may result in fire or malfunction due to contact failure.
2. Use the unit within the rated specifications.

Failure to follow this instruction may result in fire or product damage
03. Use a dry cloth to clean the unit, and do not use water or organic solvent. Failure to follow this instruction may result in fire or electric shock.
04. Keep the product away from metal chip, dust, and wire residue which flow into the unit.
Failure to follow this instruction may result in fire or product damage.

Cautions during Use

- Follow instructions in ‘Cautions during Use’. Otherwise, it may cause unexpected accidents.
- Check the polarity of the terminals before wiring the temperature/humidity sensor. Use the cables in same thickness and length. Use the designated compensation wire for extending wire.
- Keep away from high voltage lines or power lines to prevent inductive noise. In case installing power line and input signal line closely, use line filter or varistor at power line and shielded wire at input signal line. Do not use near the equipment which generates strong magnetic force or high frequency noise.
- Do not apply excessive power when connecting or disconnecting the connectors of the product.
- Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power.
- Do not use the unit for other purpose (e.g. voltmeter, ammeter), but temperature/ humidity controller.
- When changing the input sensor, turn off the power first before changing. After changing the input sensor, modify the value of the corresponding parameter.
- Make a required space around the unit for radiation of heat. For accurate temperature measurement, warm up the unit over 20 min after turning on the power.
- Make sure that power supply voltage reaches to the rated voltage within 2 sec after supplying power.
Do not wire to terminals which are not used.
- This unit may be used in the following environments.
- Indoors (in the environment condition rated in 'Specifications')

Altitude Max. 2,000 m
Pollution degree 2
Installation category II

Product Components

- Product
- Instruction manual
- Bracket
- Temperature/Humidity sensor THD-RM

Sold Separately

- Terminal protection cover: RMA Cover

Specifications

Model		TH4M-24R
Power supply		100-240 VAC~50/60 Hz $\pm 10 \%$
Power consumption		$\leq 8 \mathrm{VA}$
Sampling period		1 sec
Display accuracy	Temperature	- At room temperature $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right): \leq \pm 1.0^{\circ} \mathrm{C}$ - Out of room temperature range: $\leq \pm 2.0^{\circ} \mathrm{C}$
	Humidity	- At room temperature $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right): \leq \pm 3.0 \% \mathrm{RH}(20$ to $90 \% \mathrm{RH})$, $\leq \pm 5.0 \%$ RH (below 20\%RH, over 90\%RH) - Out of room temperature: $\leq \pm 5.0 \% \mathrm{RH}$ (all range)
Display range	Temperature	-20.0 to $60.0{ }^{\circ} \mathrm{C}$
	Humidity	10.0 to 100.0% RH
Using range	Temperature	-20.0 to $60.0{ }^{\circ} \mathrm{C}$
	Humidity	10.0 to 100.0% RH
Control output ${ }^{01)}$	Temperature (OUT1)	Relay: 250 VAC ~ 3 A, 30 VDC $=-3 \mathrm{~A}, 1 \mathrm{a}$
	Humidity (OUT2)	Relay: $250 \mathrm{VAC} \sim 3 \mathrm{~A}, 30 \mathrm{VDC}=-3 \mathrm{~A}, 1 \mathrm{a}$
Alarm output	Relay	AL1/2: $250 \mathrm{VAC} \sim 3 \mathrm{~A}, 1 \mathrm{l}$
Display type ${ }^{\text {02) }}$		11-Segment (temperature: white, humidity: blue), other display (yellow) LCD type
Control type		ON/OFF control
Relay life cycle	Mechanical	$\geq 5,000,000$ operations
	Electrical	$\geq 200,000$ operations (resistance load: 250 VAC $\sim 3 \mathrm{~A}$)
Dielectric strength		Between primary circuit and secondary circuit: 3,000 VAC~50/60 Hz for 1 min
Vibration		0.75 mm amplitude at frequency 5 to 55 Hz (for 1 min) in each X, Y, Z direction for 2 hours
Insulation resistance		$\geq 100 \mathrm{M} \Omega$ ($500 \mathrm{VDC}=$ =- megger)
Noise immunity		$\pm 2 \mathrm{kV}$ square shaped noise (pulse width $1 \mu \mathrm{~s}$) by noise simulator R-phase, S-phase
Memory retention		≈ 10 years (non-volatile semiconductor memory type)
Ambient temperature		-10 to $50{ }^{\circ} \mathrm{C}$, storage: -20 to $60^{\circ} \mathrm{C}$ (no freezing or condensation)
Ambient humidity		35 to 85\%RH, storage: 35 to 85\%RH (no freezing or condensation)
Insulation type		Double or reinforced insulation (mark: 回, dielectric strength between primary circuit and secondary circuit: 3 kV)
Approval		C ϵ
Unit weight		$\approx 144 \mathrm{~g}$

1) Connect to a load using the same power supply. Connecting to a load from a different power supply may cause safety issues.
2) When using the unit at low temperature (below $0^{\circ} \mathrm{C}$), display cycle is slow.

Temperature/Humidity sensor

Model		THD-RM
Power supply		3.3 VDC=- $\pm 2 \%$
Power consumption		$\leq 1.3 \mathrm{~mA}$
Response time		15 sec
Sensing accuracy	Temperature	- At room temperature $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right): \leq \pm 1.0^{\circ} \mathrm{C}$ - Out of room temperature: $\leq \pm 2.0^{\circ} \mathrm{C}$
	Humidity	- At room temperature $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right):$ $\leq \pm 3.0 \% \mathrm{RH}(20$ to $90 \% \mathrm{RH})$, $\leq \pm 5.0 \% \mathrm{RH}$ (below $20 \% \mathrm{RH}$, over 90% RH) - Out of room temperature: $\leq \pm 5.0 \% \mathrm{RH}$ (all range)
Sensing range	Temperature	-20.0 to $60.0{ }^{\circ} \mathrm{C}$
	Humidity	10.0 to 100.0\%RH
Communication type		I2C communication output
Dielectric strength		Between primary circuit and case: $500 \mathrm{VAC} \sim 50 / 60 \mathrm{~Hz}$ for 1 min
Vibration		0.75 mm amplitude at frequency 5 to 55 Hz (for 1 min) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 2 hours
Ambient temperature		-20 to $60^{\circ} \mathrm{C}$, storage: -20 to $60^{\circ} \mathrm{C}$ (no freezing or condensation)
Ambient humidity		0 to 100\%RH, storage: 35 to 85\%RH (no freezing or condensation)
Cable		Ø4 mm, 4 seam, 2 m (tensile strength: $1 \mathrm{kgf} / \mathrm{s}$)
Approval		C ϵ
Unit weight		$\approx 56 \mathrm{~g}$

Unit Descriptions

Dimensions

- Unit: mm, For the detailed drawings, follow the Autonics website.

- Panel cut-out

- Temperature/Humidity sensor

Installation Method

Insert the unit into a panel, fasten the bracket by pushing with tools with a flathead screwdriver.

Temperature/Humidity sensor

- Mounts sensor with M2 bolt and tighten screws by torque from 0.5 to 0.9 N.m.
- Do not impact on the unit with hard objects and do not bend the cable part too much. It may cause damage.

Connections

Crimp Terminal Specifications

- Unit: mm, Use the crimp terminal of follow shape.

Fork crimp terminal

Round crimp termina

Initial Display When Power is ON

When power is supplied, after all display will flash for 1 sec , model name is displayed sequentially. After input sensor type will flash twice, enter into RUN mode

Display	1. All	2. Model	3. RUN mode
Temperature		と H 4 M	55.0
Humidity		248	42.8

Mode Setting

RUN $\left[\begin{array}{l}\text { [MODE] } \\ {[M O D E] 2 \mathrm{sec}}\end{array}\right.$

1) When entering SV setting mode, temperature SV setting mode appears. After that, when saving or not saving SV, it enters the sequence of humidity SV setting and RUN mode. In temperature SV setting mode, TEMP indicator lights up, and in humidity SV setting mode, HUMI indicator lights up.

Parameter Setting

- [MODE] key: Move to next item after saving / Return to RUN mode after saving (≥ 2 sec)
[《] key: Move digits / Return to RUN mode without saving ($\geq 2 \mathrm{sec}$)
[$\mathbf{\Delta}],[\boldsymbol{\nabla}]$ key: Select parameter group / Change setting value
- TEMP indicator is ON in temperature related parameter, and HUMI indicator is ON in humidity related parameter.
- The control is operated during parameter setting.
- Temperature parameter setting group [TEMP]

Parameter	Display	Default	Setting range
T-1 Control output mode	o-Ft	HEAt	HEAT: Heating, COOL: Cooling
T-2 Hysteresis	H45	1.0	0.1 to $19.9{ }^{\circ} \mathrm{C}$
T-3 Delay time		0	0 to 600 sec
T-4 Input correction	1 N-b	0.0	-10.0 to $10.0{ }^{\circ} \mathrm{C}$
T-5 Sensor error, MV	Er.Mi'	-FF	OFF, ON
T-6 Temperature SV low limit	L-5i'	- 20.0	-20.0 to [H-SV] $-0.1{ }^{\circ} \mathrm{C}$
T-7 Temperature SV high limit	H-5i	60.0	[L-SV] +0.1 to $60.0{ }^{\circ} \mathrm{C}$
Humidity parameter setting group [HUMI]			

Parameter	Display	Default	Setting range
H-1 Control output mode	o-Ft	HERE	HEAT: Heating, COOL: Cooling
$\mathrm{H}-2$ Hysteresis	H45	1.0	0.1 to 19.9 \%RH
H-3 Delay time	di fle	0	0 to 600 sec
H-4 Inputcorrection	1 N-b	0.0	-10.0 to 10.0 \%
H-5 Sensor error, MV	Er.Mi'	-FF	OFF, ON
H-6 Humidity SV low limit	L-5i'	10.0	10.0 to [H-SV] - 0.1 \%RH
H-7 Humidity SV high limit	H-5i'	100.0	[L-SV] + 0.1 to 100.0 \%RH

■ Additional parameter setting group [ADD]

Parameter	Display	Default	Setting range
A-1 Input digital filter	M. RI.F	I.D	0.1 to 100.0

[^0]02) When entering the parameter group, 'LOCK' indicator is ON .

Sold Separately：Terminal Protection Cover

－Unit：mm，For the detailed drawings，follow the Autonics website．
RMA COVER：DIN W72 \times H72

Function：Alarm

－Operation
－H：Alarm output hysteresis

Name	Alarm operation		Description
－	－		No alarm output
Deviation high limit	OFF $\sqrt{\mathrm{H}}{ }^{4} \mathrm{ON}$	OFF ${ }^{\text {HT ON }}$	If deviation between PV and SV as high－limit is higher than set value of deviation temperature，the alarm output will be ON．
	High deviation：Set as $10^{\circ} \mathrm{C}$	High deviation：Set as $-10^{\circ} \mathrm{C}$	
Deviation low limit	ON ${ }^{\text {Hy }}$ OFF	ON $\mathrm{H}_{\mathbf{y}}$ OFF	If deviation between PV and SV as low limit is higher than set value of deviation temperature，the alarm output will be ON．
		$\begin{array}{cc} \hline \mathrm{SV} & \triangle \\ 100^{\circ} \mathrm{C} & 110^{\circ} \mathrm{C} \\ \hline \end{array}$	
	Low deviation：Set as $10^{\circ} \mathrm{C}$	Low deviation：Set as $-10^{\circ} \mathrm{C}$	
Deviation high，low limit			If deviation between PV and SV as high／low－limit is higher than set value of deviation temperature，the alarm output will be ON．
	$\begin{gathered} \triangle \\ \mathrm{pv} \\ 90^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \triangle \\ \stackrel{\rightharpoonup}{P^{\circ}} \\ 110^{\circ} \mathrm{C} \end{gathered}$	
	High，Low deviation：Set as $10^{\circ} \mathrm{C}$		

Segment Table

The segments displayed on the product indicate the following meanings．It may differ depending on the product．

7 Segment				11 Segment				12 Segment				16 Segment			
0	0	＇	1	0	0	＇	1	0	0	।	।	0	0	I	1
1	1	U	J	1	1	U	J	1	1	U	J	1	1	J	J
2	2	\longleftarrow	K	2	2	＊	K	2	2	K	K	2	2	k	K
3	3	L	L	3	3	L	L	3	3	L	L	3	3	L	L
4	4	$\overline{\text { 万 }}$	M	4	4	M	M	4	4	M	M	4	4	M	M
5	5	ก	N	5	5	N	N	5	5	N	N	5	5	N	N
5	6	0	0	5	6	0	0	5	6	0	0	5	6	0	0
7	7	P	P	7	7	P	P	7	7	P	P	7	7	P	P
8	8	9	Q	8	8	0	Q	8	8	0	Q	8	8	0	Q
9	9	r	R	9	9	R	R	9	9	R	R	9	9	P	R
A	A	5	S	A	A	5	S	月	A	5	S	A	A	5	S
b	B	t	T	b	B	t	T	b	B	t	T	1	B	T	T
［	C	U	U												
d	D	4	v	d	D	＂	V	d	D	V	v	I	D	1	V
E	E	$\underline{4}$	W	E	E	W	W	E	E	W	W	E	E	H	W
F	F	4	X	F	F	\％	X	F	F	\because	X	F	F	＊	X
\square	G	y	Y	\square	G	y	Y	5	G	y	Y	5	G	；	Y
H	H	三	Z	H	H	I	Z	H	H	I	Z	H	H	I	Z

[^0]: 1) Alarm hysterisis $=1.0^{\circ} \mathrm{C} / \% \mathrm{RH}$ (fixed)
