

Чиллеры с воздушным охлаждением конденсатора и винтовым компрессором

Моноблочные чиллеры с воздушным охлаждением конденсатора являются наиболее эффективным и доступным оборудованием центральных систем кондиционирования. В них используются двухвинтовые компрессоры с плавным регулированием производительности.

Чиллеры Midea отвечают самым современным требованиям по надежности и энергоэффективности, поэтому широко применяются по всему миру в школах, больницах, торговых центрах, офисах, а также в производственных помещениях.

ШКОЛА

производство

гостиница

БОЛЬНИЦА

ОФИС

Модельный ряд


Мощность (кВт)	330	380	400	440	500	535	600	720	760	900	1000	1200	1420
Винтовой чиллер с воздушным охлаждением 380B-3Ф-50Гц (Т1)													

Главные компоненты

Компрессор

В чиллерах установлены двухвинтовые компрессоры Bitzer с высокоэффективным двухполюсным двигателем третьего поколения. Скорость вращения винтов составляет 2950 оборотов в минуту. Винты имеют 6 (у ведущего) и 5 (у ведомого)

витков зубьев асимметричной формы, благодаря чему достигается увеличение на 20% производительности компрессора и повышение эффективности по сравнению с компрессорами предыдущего поколения, в которых использовались винты с 5/4 зубьями. Благодаря высокой точности изготовления деталей компрессора количество хладагента, перетекающего в зону низкого давления, крайне мало. В стандартном исполнении осуществляется четырехступенчатая (с уровнями 25-50-75-100%) регулировка производительности. Опционально возможно оснащение приводом для плавной регулировки производительности. Эффективность работы компрессора наилучшим образом оптимизирована в области частичных нагрузок. В компрессоре использованы подшипники шведской компании SFK, срок безотказной службы которых составляет 60 000 часов.

Конденсатор

- М-образная форма конденсатора повышает эффективность теплообмена.
- Бесшовные медные трубы с внутренней накаткой, повышающей эффективность.

■ Ребра из экструдированного алюминия.

По сравнению с оборудованием кондиционирования предыдущего поколения конденсатор нового поколения имеет М-образную форму, что позволило увеличить площадь теплообмена и добиться большей компактности чиллера.

Теплообменник М-образной формы состоит из бесшовных медных труб с внутренней накаткой и ребер из алюминиевого сплава с гидрофильным покрытием. Смотровое стекло с цветным индикатором служит для контроля содержания влаги в линии, а также уровня заправки хладагента.

Минимальные приведенные затраты

 Высокая надежность сокращает вероятность нежелательных простоев.

■ Удобство эксплуатации и низкая стоимость обслуживания.

Испаритель

- Теплообменник со стороны воды.
- Кожухотрубного типа с медными трубами.
- Непосредственного испарения, все проблемы с возвратом масла решены.
- Медные трубы с внутренней накаткой.
- Теплоизолирующее покрытие толщиной 20 мм.

Теплообменник непосредственного испарения кожухотрубного типа. Съемные торцевые крышки позволяют получить доступ к трубам конденсатора. Хладагент перемещается по трубам, вода подается внутрь

стального кожуха с установленными в нем перегородками из гальванизированной стали. Благодаря такой конструкции не возникает проблем с возвратом масла, гарантируется высокая надежность работы компонентов холодильного контура. Изолирующее покрытие толщиной 20 мм обеспечивает снижение теплопередачи.

Вентилятор и двигатель

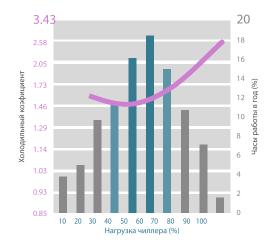
- Вентилятор со статической и динамической балансировкой с низким уровнем шума и вибрации.
- Высокая производительность по воздуху и статическое давление.
- Высокоэффективный шестиполюсный трехфазный двигатель с прямым приводом. F-класс изоляции и IP55 класс защиты.

Система управления

- Надежная плата управления.
- Микропроцессорный программируемый логический контроллер (PLC), опционально возможна установка контроллера Schneider.

- Функция регулировки производительности.
- Сенсорный экран.
- Пульт дистанционного управления (опция).
- Возможность подключения к дисплею компьютера (в наличии резервный порт Rs485).

Чиллеры с воздушным конденсатором и винтовым компрессором Midea оснащены программируемым логическим контроллером (PLC), имеющим аналоговые и цифровые входы. На сенсорном 7-дюймовом экране отображаются все необходимые параметры работы и коды ошибок.


Система управления осуществляет мониторинг параметров и диагностику неисправностей. Контроллер дает возможность составления недельного расписания работы, ведения записи основных текущих параметров, истории тепловой нагрузки, сбоев в работе и их причин. Имеется функция восстановления параметров, предшествующих выключению оборудования. Автоматика системы и многочисленные датчики обеспечивают защиту по давлению, уровню содержания хладагента и масла, не допускают перегрузки двигателя, замерзания теплоносителя. При отсутствии протока воды работа устройства автоматически прекращается. Также контролируется правильность чередования и обрыв фаз питающего напряжения. Через порт RS485 PLC-контроллер может быть интегрирован в систему управления зданием по протоколу связи ModBus.

Преимущества

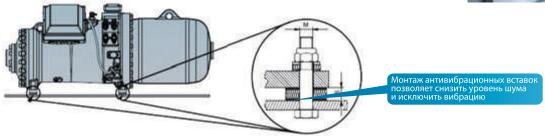
Сокращение эксплуатационных затрат

- Чиллер имеет высокую эффективность при частичной нагрузке (IPLV):
 - согласно расчетам AHRI 550/590 большую часть времени чиллеры эксплуатируются при неполной нагрузке;
 - холодильный коэффициент имеет максимальное значение при частичной нагрузке 50–75%.

Широкий диапазон температур охлаждаемого теплоносителя позволяет сократить стоимость эксплуатации системы ОВиК.

Экологическая безопасность

- Высокая экономичность чиллеров снижает потребности производства электроэнергии и уменьшает выброс парниковых газов (СО2).
- R134a это экологически безопасный хладагент, не разрушающий озоновый слой.
- Соответствует требованиям LEED®.
- Небольшой объем заправки хладагента.
- Высокая производительность.

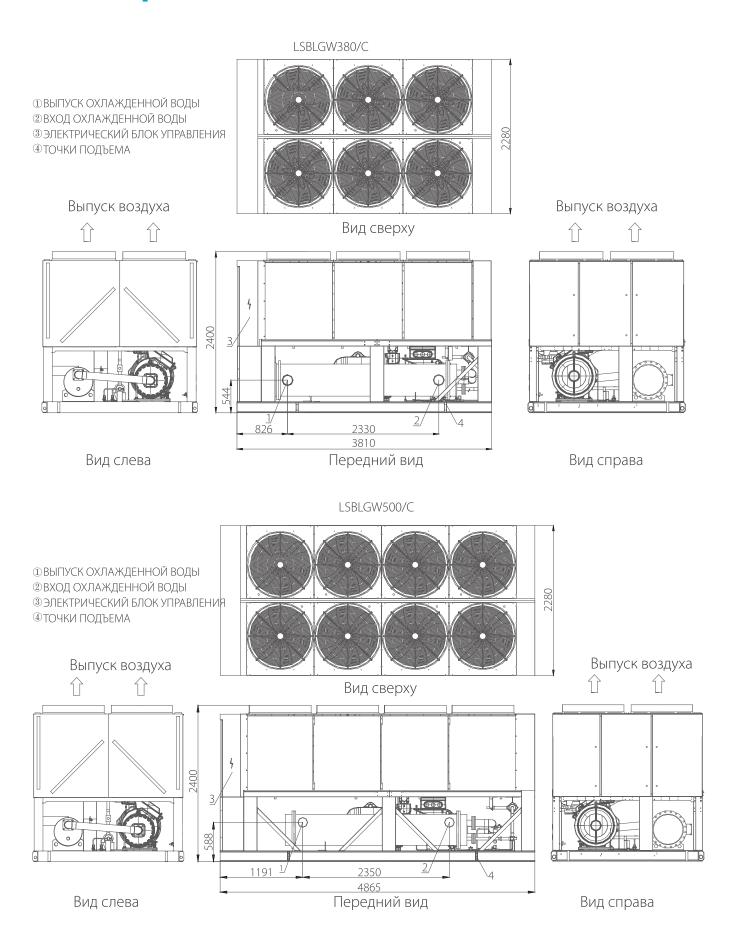


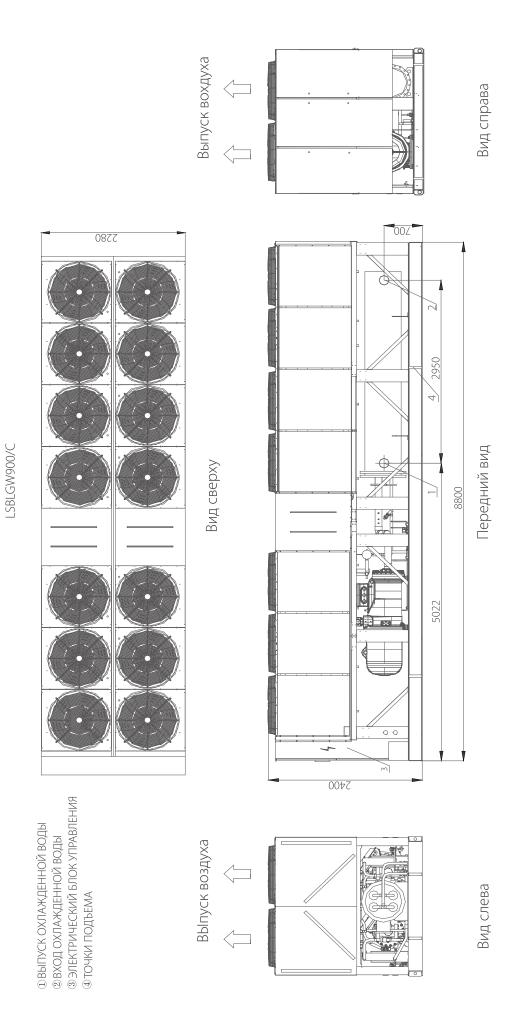
Пониженный уровень шума при работе — повышенный уровень комфорта

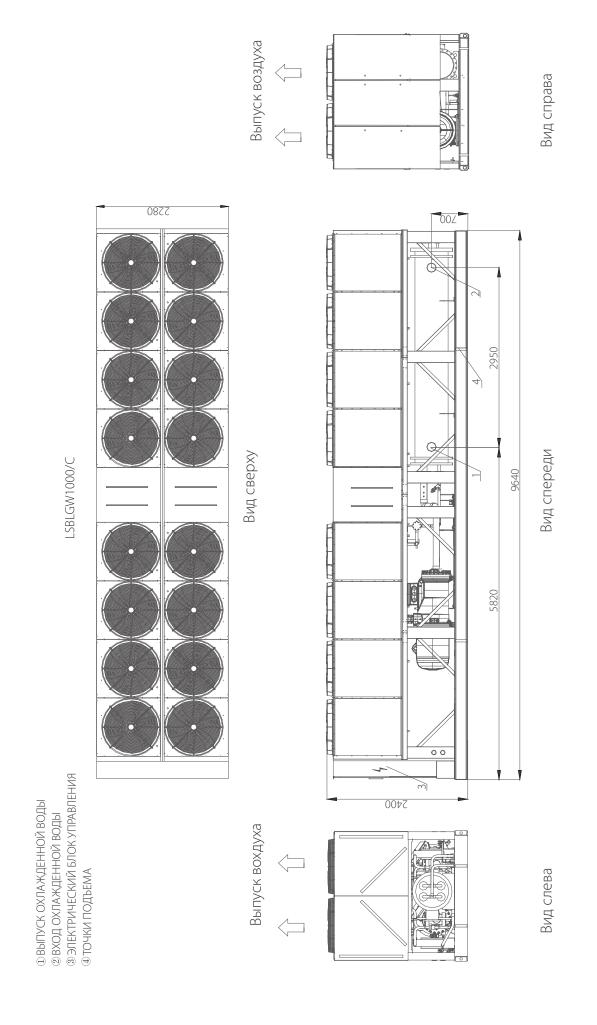
- Вентилятор с большим размером имеет меньшую частоту вращения и, вместе с тем, меньший шум.
- С понижением температуры наружного воздуха уменьшается расход воздуха и снижается шум.
- Виброзащита компрессора.

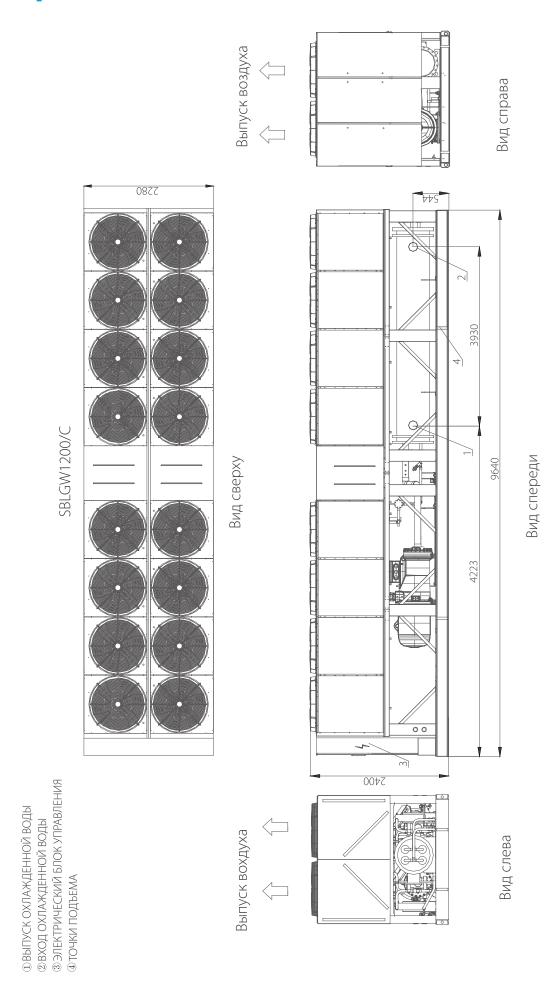
Технические характеристики

LSBLGWXXX/C		380	500	600	720	900	1000	1200	1420
Мощность охлаждения	кВт	376.0	496.0	594.0	720.0	902.0	996.0	1203	1419
Потребляемая мощность	кВт	124.0	159.0	187.0	234.0	285.0	318.0	381.0	466.0
COP	кВт/кВт	3.032	3.120	3.177	3.077	3.165	3.132	3.158	3.045
IPLV	кВт/кВт	4.087	4.196	4.293	4.168	4.268	4.253	4.290	4.154
Номинальный ток	Α	221.7	280.9	334.3	413.4	503.5	561.8	681	823.3
Пусковой ток	А	648.7	882.0	882.0	1007.0	648.7/882.0	882.0/882.0	882.0/882.0	1007.0/1007.0
Макс. рабочий ток	А	295.0	374.9	460.1	526.0	292.6/374.2	374.9/374.9	423.5/423.5	526.0/526.0
Полугерметичный винтовой ког	мпрессор								
Контур А	Кол-во	1	1	1	1	1	1	1	1
Контур В	Кол-во					1	1	1	1
Заправка маслом	Тип	BSE170	BSE170	BSE170	BSE170	BSE170	BSE170	BSE170	BSE170
Контур А	Л	30	30	30	30	30	30	30	32
Контур В	Л					30	30	30	32
Хладагент	Тип	R134a	R134a	R134a	R134a	R134a	R134a	R134a	R134a
Контур А	KF	76	90	105	140	76	90	105	140
Контур В	KΓ					90	90	105	140
Тип управления		EXV	EXV	EXV	EXV	EXV	EXV	EXV	EXV
Испаритель	Тип	Кожухотрубный теплообменник (DX)							
Содержание воды	Л	222	308	340	520	620	600	770	910
Расход воды	м³/ч	64.67	85.31	102.2	123.8	155.1	171.3	206.9	244.1
Перепад давления	кПа	38.6	53.5	56.6	58.2	72.5	74.7	71.0	69.1
Макс. рабочее давление (вод. часть)	МПа	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Тип соединения труб		Victaulic							
Диаметр трубы входа/выхода воды.	MM	125	125	125	150	150	150	200	200
Конденсатор	Тип	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник	Оребрённый теплообменник
Вентилятор	Кол-во	6	8	10	10	14	16	16	20
Общий расход воздуха	м³/ч	23000×6	23000×8	23000×10	23000×10	23000×14	23000×16	23000×16	23000×20
Общая потребляемая мощность двигателя	кВт	2.4×6	2.4×8	2.4×10	2.4×10	2.4×14	2.4×16	2.4×16	2.4×20
Длина блока	ММ	3810	4865	5800	5800	8800	9640	9640	11700
Ширина блока	ММ	2280	2280	2280	2280	2280	2280	2280	2280
Высота блока	ММ	2400	2400	2400	2400	2400	2400	2400	2400
Вес нетто	КГ	3920	4420	5160	5750	8050	8410	9210	10730
Вес брутто	ΚΓ	4140	4730	5500	6270	8670	9010	9980	11640

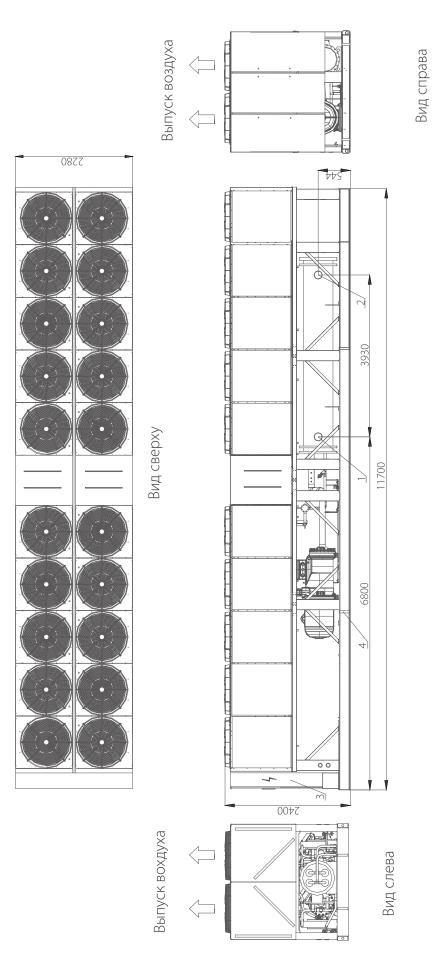

Примечание


^{1.} Охлаждение: температура охлажденной воды на выходе 7°C, расход воды = холодопроизводительность х 0,172 м3/(ч•кВт), температура наружного воздуха 35°C по сухому термометру; Коэффициент загрязнения испарителя = 0,018 м2.°C/кВт.


^{2.} Расчеты IPLV по стандартным исполнениям (в соответствии с AHRI 550/590).


^{3.} Допустимый диапазон температуры окружающей среды составляет 15°С ~ 43°С.

^{4.} В результате постоянного улучшения продукта вышеуказанные параметры могут быть изменены.



LSBLGW1420/C

®ЭЛЕКТРИЧЕСКИЙ БЛОК УПРАВЛЕНИЯ ФТОЧКИ ПОДЪЕМА

ВЫПУСК ОХЛАЖДЕННОЙ ВОДЫ

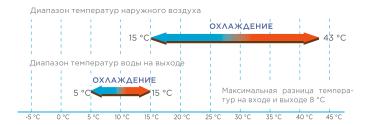
② ВХОД ОХЛАЖДЕННОЙ ВОДЫ

Вид спереди

Технические характеристики

Инверторный чиллер своздушным охлаждением конденсатора и винтовым компрессором

SCAF***HV		Модель	115	140	175	205	240	275	330	385	410	
	Мощность охлаждения	кВт	397.0	493.0	618.1	723.8	844.5	965.0	1162	1368	1448	
	Потребляемая мощность	кВт	116.5	143.6	181.3	212.3	247.5	283.7	340.3	401.2	425.0	
Номинальный показатель	Охлаждения СОР	кВт/кВт	3.40	3.43	3.40	3.40	3.41	3.40	3.41	3.41	3.40	
	IPLV	кВт/кВт	4.992	5.054	5.019	5.018	4.986	4.984	4.979	4.971	5.069	
V	Тип	/	Полугерметичный двухроторный винтовой компрессор									
Компрессор	Кол-во	/	1	1	1	1	1	1	2	2	2	
Режим регулирования энергии		/	Бесступенчатое управление (один компрессор 10%-100%, двойной компрессор 5%-100%)									
Хдадагент	Тип	/					R134a					
удода ст	Количество	КГ	126	148	168	192	225	280	2×168	2×200	2×200	
Электропитание		/	380В-3Ф-50Гц									
Номинальный ток			192.4	238.8	302.7	350.7	414.5	474.2	565.3	668.4	720.4	
Стартовый ток		А	≤192.4	≤238.8	≤302.7	≤350.7	≤414.5	≤474.2	≤565.3	≤668.4	≤720.4	
Максимальный рабочий ток	Максимальный рабочий ток		264.6	329.8	392.3	449.9	524.8	595.3	756.0	841.6	886.6	
	Тип	/	Fin-coil									
Теплообменник на воздушной стороне	Количество вентиляторов	/	6	8	10	12	14	16	18	20	20	
	Потребляемая мощность двигателя	кВт	2.0									
	Тип	/	Оболочка и трубка									
Теплообменник	Расход воды	м³/ч	68.28	84.79	106.3	124.5	145.3	166.0	199.8	235.3	249.1	
на водяной стороне	Падение давления со стороны воды	кПа	42.2	43.8	73.0	68.9	80.2	72.7	75.6	73.9	75.3	
	Соединение с водопроводом	ММ	DN150	DN150	DN150	DN150	DN150	DN200	DN200	DN200	DN200	
	Макс. рабочее давление	МПА					1.0					
Размеры	Длина	MM	4440	5240	6245	7250	8255	9260	10265	11270	11270	
	Ширина	ММ	2300	2300	2300	2300	2300	2300	2300	2300	2300	
	Высота	ММ	2460	2460	2460	2460	2460	2460	2460	2460	2460	
Вес нетто			4240	4950	5500	6170	7050	7600	9800	10980	10980	
Вес брутто			4440	5150	5720	6410	7330	7940	10160	11380	11380	


^{1.} Охлаждение: температура охлажденной воды на выходе 7° С, расход воды = холодопроизводительность х 0,172 м3/(ч•кВт), коэффициент загрязнения = 0,018 м2°С/кВт, температура наружного воздуха 35°С по сухому термометру.

^{2.} Расчеты IPLV по стандартным исполнениям (в соответствии с AHRI 550/590).

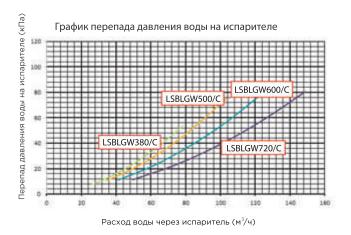
^{3.} В результате постоянного улучшения продукта вышеуказанные параметры могут быть изменены. 4. Серия SCAF***HV сертифицирована AHRI.

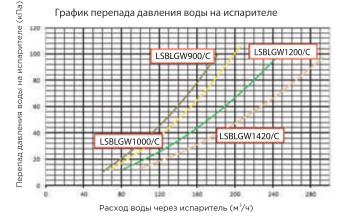
Область применения

Диапазон рабочих температур

Диапазон применения

Описание	Рабочий диапазон
Колебания напряжения	±10% от номинального напряжения
Частота сети электропитания	±2% от номинальной частоты
Макс. частота включений компрессора	4 раза в час
	Следует избегать сред с высокой
Условия окружающей среды	коррозионной активностью и
	высокой влажностью


Этиленгликоль


Водный раствор		Температура			
гликоля, %	холодо-	потребляемой	потери	расхода	замерзания, °С
	производ.	мощности	давления	воды	
0	1.000	1.000	1.000	1.000	0
10	0.993	0.997	1.013	1.019	-4
20	0.984	0.994	1.149	1.051	-9
30	0.975	0.989	1.343	1.092	-16
40	0.969	0.984	1.624	1.145	-23
50	0.961	0.987	2.026	1.213	-35

Пропиленгликоль

Водный		Температура			
раствор гликоля, %	холодо-	потребляемой	потери	расхода	замерзания, °С
THIROHA, 70	производ.	мощности	давления	воды	
0	1.000	1.000	1.000	1.000	00
10	0.990	0.992	1.029	1.013	-3
20	0.979	0.983	1.167	1.035	-7
30	0.964	0.975	1.364	1.063	-13
40	0.950	0.967	1.648	1.098	-21
50	0.925	0.960	2.056	1.145	-33

Графики зависимости падения давления воды

