

H250 M40 Технические данные

Ротаметр

- Надёжные, экономически эффективные измерения и индикация без подключения электропитания
- Модульная конструкция, позволяющая расширить функциональные возможности прибора вплоть до FOUNDATIONTM Fieldbus
- Прочная закрытая конструкция с высокой устойчивостью к давлению, температуре и свойствам измеряемой среды

1	Особенности изделия	3
		_
	1.1 Интеллектуальная модульная конструкция	
	1.2 Опции и модификации	
	1.3 Принцип действия	(
2	Технические характеристики	8
	2.1 Технические характеристики	8
	2.2 Габаритные размеры и вес	
	2.3 Диапазоны измерения	
3	Монтаж	27
	3.1 Назначение прибора	
	3.2 Условия установки	
	3.2.1 Усилия затяжки	
	3.2.2 Магнитные фильтры	
	3.2.3 Теплоизоляция	
	3.2.4 Система демпфирования поплавка	
4	Электрический монтаж	33
	4.1 Указания по технике безопасности	33
	4.2 Электрические присоединения индикатора М40	
	4.2.1 Предельные выключатели K1/K2	
	4.2.2 Токовый выход ESK4 / ESK4A	
	4.2.3 Предельные выходные сигналы ESK4-T	39
	4.2.4 Импульсный выход ESK4-T	
	4.2.5 Бинарный вход ESK4-T	
	4.2.6 Коммуникационный протокол ESK4-FF / ESK4-PA	
	4.3 Подключение заземления	
	4.4 Степень защиты	44
5	Бланк заказа	45
6	Б Примечания В Примечания	46

1.1 Интеллектуальная модульная конструкция

Цельнометаллические ротаметры H250 выполняют все требования к промышленной измерительной технике. Модульная конструкция прибора и гибкая производственная структура являются основой для создания специальных версий прибора, предназначенных для конкретных условий применения и требований заказчика.

Основой прибора H250 M40 является полностью механическая конструкция.

Дополнительные модули электроники могут быть встроены или заменены в любое время без необходимости остановки технологического процесса.

Таким образом, функциональные возможности прибора адаптируются под любые изменения требований.

От аналогового измерения расхода без необходимости использования дополнительного источника питания до интеграции в систему со связью по цифровому интерфейсу.

Просто открутите крышку, вставьте модуль до его фиксации, вновь прикрутите крышку и на этом всё. Столь же легко можно заменить шкалу в случае изменения параметров применения.

- 1 или 2 предельных выключателя, тип NAMUR
 Транзистор (3-проводный) или герконовый контакт
- 2-проводный выходной сигнал 4...20 мА с наложенным протоколом HART
- З Дополнительный ЖК-дисплей для индикации значений расхода и/или показаний счётчика объёма, 2 бинарных выхода с возможностью настройки для предельного выключателя и импульсного выхода и 1 бинарный вход для запуска/остановки или сброса счётчика.
- ② 2-проводный промышленный протокол Foundation Fieldbus или Profibus PA

Все модули искробезопасны (Ex i) и опционально могут быть встроены во вторичную защитную оболочку (Ex d, Ex t, Ex nA).

Отличительные особенности

- Простая и недорогая установка: измерение и индикация без дополнительного источника питания
- Универсальная концепция взрывозащиты: Ex і и Ex d
- Модульное дооснащение системы от механической версии до версии с промышленными протоколами
- Монтаж в любой позиции: вертикальный с направлением потока снизу вверх, горизонтальный, вертикальный с направлением потока сверху вниз
- Прочная конструкция измерительной трубы для работы при очень высоких рабочих температурах и давлении.
- Выбор материала: нержавеющая сталь, Хастеллой $^{@}$, титан, монель, РТFE/TFM и т.п.
- Множество вариантов технологических присоединений: фланцевые, резьбовые, на хомутах, приварные и т. п.
- Расширенный диапазон измерения: до 100:1
- Высокая надёжность применения, даже при малых расходах

Отрасли промышленности

Может использоваться во всех промышленных отраслях, например:

- Химическая
- Нефтехимическая
- Фармацевтическая
- Машиностроение
- Пищевая и производство напитков
- Нефтегазовая
- Металлургическая и сталелитейная
- Энергетическая
- Целлюлозно-бумажная
- Водоснабжение, водопользование и очистка сточных вод

Области применения

- Инертирование азота для предотвращения создания взрывоопасной атмосферы
- Измерение таких добавок, как катализаторы, поверхностно-активные вещества, противовспенивающие и антикоррозионные агенты
- Измерение соединений хлора, серы и этилена
- Измерение дистиллированной или деминерализованной воды
- Мониторинг смазывающих и охлаждающих веществ для промышленных насосов и вращающихся механизмов
- Мониторинг систем уплотнения на компрессорах
- Измерение газа для промышленных печей
- Гигиенические применения в пищевой и фармацевтической промышленности

1.2 Опции и модификации

Прочная конструкция для сложных рабочих условий

H250 M40R

Для данного принципа измерения может использоваться надёжная закрытая конструкция без встроенного датчика, поскольку высота поплавка передаётся на индикатор с помощью магнитной системы. При этом возможны версии, предназначенные для работы при высоком давлении, которые могут выдерживать до 900 бар изб /13000 фут/кв.дюйм изб. Все контактирующие с измеряемой средой части, находящиеся под давлением, выполнены стандартно из нержавеющей стали 1.4404/316L и соответствуют требованиям стандарта NACE MR0175. Для обеспечения продолжительного срока службы прибора даже в случае применения на химически агрессивных средах возможно использовать в производстве специальные материалы, такие как Хастеллой[®], титан, Монель[®] и т.д. Кроме того, прибор H250 С M40 также доступен с футеровкой из PTFE для применений с участием агрессивных кислот

Гигиеническое исполнение для пищевой и фармацевтической промышленности

и щелочей.

H250F M40R

Единственный сертифицированный в соответствии с требованиям EHEDG ротаметр, одобренный для использования в пищевой и фармацевтической промышленности.

Гладкая поверхность из нержавеющей стали с шероховатостью ≤ 0.8 мкм или 0.6 мкм для деталей, контактирующих с измеряемой средой, затрудняет образование отложений и очень легко очищается.

Благодаря отсутствию в конструкции мёртвых и застойных зон микроорганизмы не имеют возможности закрепиться на поверхности и начать размножаться. Для измерительных приборов допускаются процессы безразборной очистки и стерилизации по месту установки. Для пищевой и фармацевтической промышленности доступны соответствующие технологические присоединения и материалы, одобренные FDA.

Модели для установки в особых положениях

H250H / H250U

Ротаметры обычно имеют вертикально расположенный измерительный конус, через который рабочая среда проходит в направлении снизу вверх, поднимая поплавок против вектора воздействия его силы тяжести.

Если монтажные условия не позволяют использовать такое положение, существуют модели для установки в горизонтальном положении или в вертикальном положении с обратным направлением потока (сверху вниз).

Отсутствующее усилие силы тяжести поплавка ротаметра в этом случае возмещается действием пружины.

Модель с расширенным диапазоном измерения 100:1

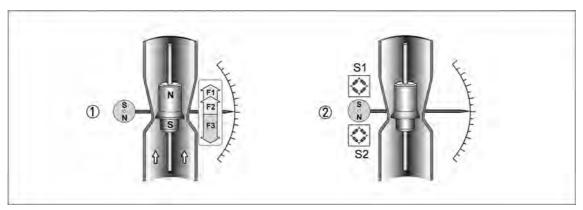
Обычный диапазон измерения устройства H250 составляет 10:1.

Диапазон измерения 100:1 может быть достигнут при использовании пружины, которая, начиная с определённого хода поплавка, действует как восстанавливающая сила в дополнение к силе тяжести. Тем самым устраняется необходимость в использовании дополнительного устройства для определения минимальных объёмов.

Варианты дисплея:

6

М40 Алюминий, однослойное порошковое покрытие (полиэфир)


M40S Алюминий, двухслойное порошковое покрытие (эпоксид / полиэфир)

M40R Нержавеющая сталь без покрытия M40HT Высокотемпературное исполнение

Покрытие краской корпуса из алюминия или нержавеющей стали, а также измерительного блока для морских применений по запросу

1.3 Принцип действия

Расходомер H250 работает по принципу поплавковой технологии измерения. Измерительное устройство состоит из металлического конуса, в котором поплавок свободно передвигается вверх и вниз. Поток направлен снизу вверх. Поплавок изменяет своё положение таким образом, что действующая на него подъёмная сила F1 уравновешивается сопротивлением формы F2 и силой тяжести поплавка F3: F3 = F1 + F2

- ① Принцип индикации М40 индуктивная связь
- 2 Датчики индуктивной связи
- ① Зависящая от расхода высота поплавка в измерительном блоке прибора передаётся посредством индуктивной связи и отображается на шкале индикатора.
- ② При использовании встроенного преобразователя сигналов (ESK4 / ESK4A) высота поплавка, зависящая от расхода, фиксируется датчиками магнитного поля S1 и S2 и обрабатывается электроникой.

Принцип работы H250H и H250U

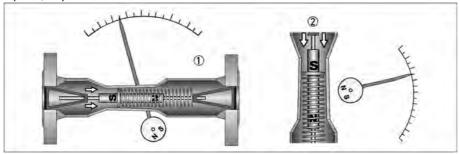


Рисунок 1-1: Принцип работы H250H и H250U

- ① H250H горизонтальное направление потока
- ② Н250U направление потока сверху вниз

Расходомер работает в соответствии с модифицированным принципом измерения с помощью поплавка.

Поплавок в направляющем канале саморегулируется таким образом, что действующая на него сила потока находится в равновесии с противодействующей силой пружины. Зависящее от расхода положение поплавка в измерительном блоке отображается на шкале посредством индуктивной связи.

2.1 Технические характеристики

- Приведенные ниже данные распространяются на общие случаи применения. Если требуются данные, имеющие отношение к конкретной рабочей позиции, следует обратиться в региональное представительство нашей фирмы.
- Дополнительная информация (сертификаты, специализированный инструментарий, программное обеспечение...) и полный пакет документации на изделие доступны для загрузки бесплатно с Интернет-сайта (в разделе "Download Center" "Документация и ПО").

Измерительная система

Область применения	Измерение расхода жидкостей, газов и пара	
Функционирование / Принцип измерения	Принцип измерения переменного сечения	
Измеряемый параметр		
Первичная измеряемая величина	Положение поплавка	
Вторичная измеряемая величина	Рабочий и приведённый к стандартным условиям объёмный расход	

Точность измерений

Директива	VDI / VDE 3513, лист 2 (q _G = 50%)
H250 /RR /HC /F	1,6%
H250/C (керамика, PTFE) H250H, H250U, H250 (100 : 1)	2,5%

Условия эксплуатации

Температура				
Макс. рабочая температура TS	-196+300°C / -321+572°F В зависимости от версии (смотрите типовую табличку)			
Давление				
Макс. рабочее давление PS	В зависимости от версии (смотрите типовую табличку)			
Макс. испытательное давление РТ	В зависимости от версии (смотрите типовую табличку)			
Мин. необходимое рабочее давление	Превышает падение давления в 2 раза (смотрите диапазоны измерения)			
Степень защиты				
M40, M40S, M40R	IP 66/68 согласно EN 60529, NEMA 4/4X/6 согласно NEMA 250			
M40R	IP69K согласно DIN 40050-9			
Демпфирование поплавка при измерении газов рекомендовано:				
DN1525 / ½1"	Рабочее давление: <0,3 бар / 4,4 фунт/кв.дюйм изб			
DN50100 / 24"	Рабочее давление: <0,2 бар / 2,9 фунт/кв.дюйм изб			

Условия монтажа согласно VDI/VDE 3513 лист 3

Прямой участок на входе	≥ 5 x DN
Прямой участок на выходе	≥ 3 x DN

www.krohne.com 08/2015 - 4004570901 - TD H250 M40 R03 ru

Материалы

Прибор	Фланец	Измери- тельная труба	Поплавок	Направляющая поплавка	Кольцевой зазор
H250/RR	Нержавеющая сталь (CrNi 1.4404 /	316L		
H250/HC	Хастеллой [®] С-22 (2.4602) без покрытия или с покрытием	Хастеллой [®] С4			
H250/F - для пищевой промышленности	Сталь CrNi 1.4435	Сталь CrNi 1.4435 / 1.4404			
H250/C Керамика/РТFЕ ⊕	Сталь CrNi 1.4571 с футеровкой TFM/PT	FE ②	PTFE или Al ₂ O ₃ с прокладкой из FFKM	Al ₂ O ₃ и PTFE (фторопласт)	Al ₂ O ₃

① Для DN100/4" только PTFE

Другие опции по запросу

- Специальные материалы: например, SMO 254/6Mo, титан, Хастеллой[®] C276/2.4819, монель / 2.4360 и др.
- Система демпфирования поплавка: из керамики или из РЕЕК
- Стандартная уплотнительная прокладка для приборов с внутренней резьбой в виде вставки: кольцевое уплотнение FPM / FKM, другие по выбору, например, FFKM, EPDM

M40	Алюминий, однослойное порошковое покрытие (полиэфир)
M40S	Алюминий, двухслойное порошковое покрытие (эпоксид / полиэфир)
M40R	Нержавеющая сталь без покрытия 1.4408 / CF8M
Морские применения	Покрытие краской по запросу

Температуры

Для приборов, использующихся во взрывоопасных зонах, применяются специальные температурные диапазоны. Эти диапазоны указаны в отдельной инструкции.

Температуры H250/M40 - механический индикатор без источника питания

	Материал		Температура измеряемой среды		Температура окружающей среды	
	Поплавок	Футеровка	[°C]	[°F]	[°C]	[°F]
H250/RR	Нержавеющая ст	аль	-196+300	-321+572	-40+120	-40+248
H250/RR B	интовое соединені	ıе FPM/FKM	-20+200	-4+392	-20+120	-4+248
H250/HC	Хастеллой [®]		-196+300	-321+572	-40+120	-40+248
H250/C	PTFE		-196+70	-321+158	-40+70	-40+158
H250/C	Керамика	PTFE	-196+150	-321+302	-40+70	-40+158
H250/C	Керамика	TFM / Керамика	-196+250	-321+482	-40+120	-40+248
H250 H/U	Материал пружины: нержавеющая сталь 1.4301		-40+100	-40+212	-40+120	-40+248
	Материал пружины: сплав Хастеллой [®] 2.4610		-40+200	-40+392	-40+120	-40+248

② Футеровка из TFM/PTFE (неэлектропроводная), из электропроводного PTFE по запросу

Минимальная температура окружающей среды $\mathsf{T}_{\mathsf{окр.}}$ при наличии электрических компонентов

Исполнение	[°C]	[°F]
ESK4, ESK4A, ESK4-FF, ESK4-PA ①	-40+70	-40+158
Предельный выключатель SJ3,5-SN / I7S23,5-N / Геркон SPST	-40+70	-40+158
Предельные выключатели SC3,5-N0 / SJ3,5-S1N / SB3,5-E2	-25+70	-13+158

① Контрастность дисплея вне температурного диапазона 0...+60°C / +32..+140°F снижается.

Температура для H250/M40 - при наличии электрических компонентов [°C]

		·				
	Т _{окр.} < +40°С		T _{OKP.} < +60°	°C ①		
EN	ASME	Версия с	Стандарт- ное испол- нение	НТ-версия	Стандарт- ное испол- нение	НТ-версия
DN15,	1⁄2", 1"	ESK4 / ESK4A, -FF, -PA	+200	+300	+180	+300
DN25		ESK4-T	+200	+300	+80	+130
		Предельный выключатель NAMUR	+200	+300	+200	+300
		3-проводный предельный выключатель	+200	+300	+130	+295
DN 50	2"	ESK4 / ESK4A, -FF, -PA	+200	+300	+165	+300
		ESK4-T	+180	+300	+75	+100
		Предельный выключатель NAMUR	+200	+300	+200	+300
		3-проводный предельный выключатель	+200	+300	+120	+195
DN 80,		ESK4 / ESK4A, -FF, -PA	+200	+300	+150	+250
DN100		ESK4-T	+150	+270	+70	+85
		Предельный выключатель NAMUR	+200	+300	+200	+300
		3-проводный предельный выключатель	+190	+300	+110	+160

Максимальная температура измеряемой среды для H250/M40 - при наличии электрических компонентов [°F]

			Т _{окр.} < +10	4°F	Т _{окр.} < +14	0°F ①
EN	ASME	Версия с	Стандарт- ное испол- нение	НТ-версия	Стандарт- ное испол- нение	НТ-версия
DN15,	1⁄2", 1"	ESK4 / ESK4A, -FF, -PA	392	572	356	572
DN25		ESK4-T	392	572	176	266
		Предельный выключатель NAMUR	392	572	392	572
		3-проводный предельный выключатель	392	572	266	563
DN 50	2"	ESK4 / ESK4A, -FF, -PA	392	572	165	572
		ESK4-T	356	572	167	212
		Предельный выключатель NAMUR	392	572	392	572
		3-проводный предельный выключатель	392	572	248	383
DN 80,	3", 4"	ESK4 / ESK4A, -FF, -PA	392	572	302	482
DN100		ESK4-T	302	518	158	185
		Предельный выключатель NAMUR	392	572	392	572
		3-проводный предельный выключатель	374	572	230	320

① Если теплоизоляция не применяется, то необходимо использовать термостойкий кабель (рассчитанный на эксплуатацию при постоянной температуре: +100°C / +212°F)

Условное обозначение

НТ-версия	Высокотемпературная версия
ESK4 / ESK4A	2-проводный токовый выход 420 мА с протоколом HART 5 / HART 7
ESK4-T	ESK4 с ЖК-дисплеем, бинарными выходами состояния, цифровым счётчиком и импульсным выходом.
ESK4-FF	Интерфейс FOUNDATION FIELDBUS
ESK4-PA	Интерфейс PROFIBUS PA

Кабельные уплотнения

Кабельное уплотнение	Материал	Диаметр кабеля	
Стандартное исполнение M 20x1,5	Полиамид	813 мм	0,3150,512"
M 20x1,5	Никелированная латунь	1014 мм	0,3940,552"
M 20x1,5	Нержавеющая сталь	1014 мм	0,3940,552"

Предельные выключатели K1/K2

Клеммное соединение	2,5 mm ²				
Предельные выключатели	17S23,5-N SC3,5-N0	SJ3,5-SN ①	SJ3,5-S1N ①	SB3,5-E2	Геркон
NAMUR (IEC 60947-5-6)	Да	Да	Да	Нет	Нет
Тип присоединения	2-проводный	2-проводный	2-проводный	3-проводный	2-проводный
Функция коммутационного элемента	НЗ контакт	НЗ контакт	НР контакт	НР контакт с PNP-выходом	H3 контакт SPST
Номинальное напряжение U ₀	8,2 В пост. тока	8,2 В пост. тока	8,2 В пост. тока	1030 В пост. тока	макс. 32 В пост. тока ②
Лепесток указателя не обнаружен	≥ 3 MA	≥ 3 mA	≤ 1 mA	≤ 0,3 В пост. тока	U ₀
Лепесток указателя обнаружен	≤ 1 mA	≤ 1 mA	≥ 3 mA	U _B - 3 В пост. тока	0 В пост. тока
Постоянный ток	-	-	-	макс. 100 мА	макс. 100 мА
Ток холостого хода I ₀	-	-	-	≤ 15 MA	-
Циклы переключения	-	-	-	-	100000

① связанный с обеспечением безопасности

Токовый выход ESK4 / ESK4A

Клеммное соединение	2,5 mm ²
Напряжение питания	1430 В пост. тока (1230 В пост. тока без ESK4-T)
Мин. напряжение питания для HART®	20 В пост. тока, нагрузка 250 Ом
Измерительный сигнал	От 4,00 до 20,00 мА = значение потока от 0 до 100% по 2-проводной технологии
Влияние напряжения питания	<0,1%
Зависимость от внешнего сопротивления	<0,1%
Влияние температуры	<5 мкА/К
Макс. внешнее сопротивление / нагрузка	650 Ом (30 В пост. тока)
Мин. нагрузка для протокола HART [®]	250 Ом

ESK4 конфигурация HART®

Наименование изготовителя (код)	KROHNE Messtechnik (0x45 = 69)
Наименование модели /	ESK4 (214 = 0xD6) / HART 5.9
Версия HART®	ESK4A (17854 = 0x45BE) / HART 7.4
Физический уровень	FSK

Рабочие параметры ESK4 / ESK4A

	Значения [%] от всего диапазона шкалы	Выходной сигнал [мА]
Превышение диапазона	+102,5 (±1%)	20,2420,56
Идентификация ошибки устройства	> 106,25	>21,00
Макс. потребляемый ток	131,25	25
Многоточечный режим		4,5

② без сопротивлений

ESK4-FF

IEC 61158-2 и модель FISCO
Протокол FOUNDATION Fieldbus H1
5.2
Питание шины
16 мА
23 мА
< Номинальный ток

Подробная информация представлена в дополнительной инструкции "H250 M40 Foundation Fieldbus".

ESK4-PA

Физический уровень	IEC 61158-2 и модель FISCO
Стандарт связи	Profibus PA profile 3.02
PNO ID	4531 HEX
Напряжение питания	Питание шины
Номинальный ток	16 mA
Ток ошибки	23 mA
Пусковой ток через 10 мс	< Номинальный ток

Подробная информация представлена в дополнительной инструкции "H250 M40 Profibus PA".

ESK4-T с ЖК-дисплеем, бинарными входами и выходами и цифровым счётчиком

Бинарный выход

Два бинарных выхода	Гальванически изолированный, пассивный		
Режим работы	Коммутационный выход NAMUR или транзистор (открытый коллектор)		
Настраивается как	Коммутационный контакт или импульсный выход Н3/НР контакт или макс. 10 импульс/с		
Коммутационный выход NAM	Коммутационный выход NAMUR		
Напряжение питания	8,2 В пост. тока		
Ток сигнала	> 3 мА: точка переключения не достигнута < 1 мА: точка переключен достигнута		
Выходной транзистор коммутатора (открытый коллектор)			
Напряжение питания	Номинальное 24 В пост. тока, максимальное 30 В пост. тока		
Р _{макс.}	500 мВт		
Постоянный ток	Макс. 100 мА		
Ток холостого хода I ₀	≤ 2 MA		

Импульсный выход

Т _{вкл.}	Настраивается от 50 до 500 мс
Т _{выкл.}	В зависимости от расхода
Цена импульса	Настраивается в единицах измерения расхода, например, 5 импульс/м ³

Бинарный вход

Вход	Гальваническая изоляция	
Режим работы	Сброс счётчиков или пуск/стоп	
Настраивается как	Активный верх. / Активный ниж.	
Высокий сигнал	1630 В пост. тока	
Внутреннее сопротивление R _{внутр.}	Стандартно 20 кОм	
Т _{вкл.} (активный)	≥ 500 MC	

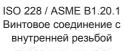
ЖК-дисплей

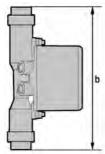
Технология	Пассивный графический ЖК-дисплей
Индикация	Измеряемый параметр вместе с единицей измерения и/или показание счётчика вместе с единицей измерения. Показание счётчика может состоять из макс. 11 знаков с возможностью сохранения при отключении питания. Двоичные флаги для состояния предельного значения. Гистограмма 0100% для значений измеряемого параметра. Символы диагностического состояния NE 107. Понятное текстовое меню настройки.
Конфигурация	Навигация по локальному понятному текстовому меню при помощи микровыключателя или стержневого магнита, либо с использованием программных средств DD/DTM.

Сертификаты

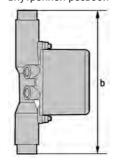
Стандартное исполнение	Индикатор	Маркировка
ATEX / IECEx	М40 механический	II2GD IIC II3GD IIC
	М40 электрический	II2G Ex ia IIC T6 Gb II2G Ex d IIC T6 Gb II3G Ex nA IIC T6 Gc II2D Ex t IIIC T70°C Db II2D Ex ia IIIC T85°C Db
FM (США) NEC500 FM (Канада) NEC505	M40 электрический	IS Класс I Кат. 1 ХР Класс I Кат. 1 NI Класс I Кат. 2 DIP Класс II / III Кат. 1
NEPSI	М40 электрический	Ex ia, Ex d, Ex nA, Ex t
CCOE/PESO	M40 электрический	Ex ia, Ex d
EAC/ГОСТ	М40 электрический	Ex ia, Ex d
INMETRO	M40 электрический	Ex ia, Ex d, Ex nA, Ex t
KGS	M40 электрический	Ex ia, Ex d, Ex nA, Ex t

2.2 Габаритные размеры и вес


Габаритные размеры Н250/М40



		а		b		d		h	
	[MM]	["]	[MM]	["]	[MM]	["]	[MM]	["]	
H250/RR Фланцевое присоединение H250/F Хомутовое присоединение	141	5,56	250	9,85	150	5,91	150	5,91	
H250/RR от 2" 600 lb ISO 228 / ASME B1.20.1 / SMS			300	11,82					


EN	ASME	С	1	е	2	Q	Ø f		g		j
		[мм]	["]	[мм]	["]	[мм]	["]	[MM]	["]	[мм]	["]
DN15	1/2"	94	3,70	114	4,49	20	0,80	97	3,82	197	7,76
DN25	1"	94	3,70	127	5,00	32	1,28	109	4,27	209	8,23
DN50	2"	107	4,22	141	5,55	65	2,57	125	4,90	222	8,74
DN80	3"	107	4,22	157	6,18	89	3,51	143	5,61	238	9,37
DN100	4"	107	4,22	167	6,57	114	4,50	150	5,91	248	9,76

① без кабельного уплотнения ② Ex d, Ex t, Ex nA +10 мм [0,39"]

ISO 228 / ASME B1.20.1 Сварное соединение с внутренней резьбой

H250/F ① Хомутовое соединение

H250/F Винтовое соединение DIN 11851

① Нержавеющая сталь 1.4435 - протестировано EHEDG – контактирующая с продуктом поверхность $Ra \le 0.8 / 0.6$ мкм

Bec

	H250			С обогревающим кожухом				
Типоразме	p			Фланцевое присоединение		Соединение Ermeto		
EN	ASME	[кг] [фунт]		[кг]	[фунт]	[кг]	[фунт]	
DN15	1/2"	3,5	7,7	5,6	12,6	3,9	8,6	
DN25	1"	5	11	7,5	16,5	5,8	12,8	
DN50	2"	8,2	18,1	11,2	24,7	9,5	21	
DN80	3"	12,2	26,9	14,8	32,6	13,1	28,9	
DN100	4"	14	30,9	17,4	38,4	15,7	34,6	

			H2		Винт. соединение				
Типор	размер	EN 1092-1		ASME 150 lb		ASME 300 lb		DIN 11864-1	
EN	ASME	[кг]	[фунт]	[кг]	[фунт]	[кг]	[фунт]	[кг]	[фунт]
DN15	1/2"	3,5	7,7	3,2	7,1	3,5	7,7	2	4,4
DN25	1"	5	11	5,2	11,5	6,8	15	3,5	7,7
DN50	2"	10	22,1	10	22,1	11	24,3	5	11
DN80	3"	13	28,7	13	28,7	15	33,1	7,6	16,8
DN100	4"	15	33,1	16	35,3	17	37,5	10,3	22,7

Технологические присоединения

	Стандартное исполнение	Диаметр присоединения	Номинальное давление	
Фланцы (H250/RR /HC /C)	EN 1092-1	DN15150	PN16250	
	ASME B16.5	1/26"	1502500 lb	
	JIS B 2220	15100	1020K	
Хомутовые присоединения (H250/RR /F)	DIN 32676	DN15100	1016 бар	
	ISO 2852	Размер 25139,7	1016 бар	
Винтовые присоединения (H250/RR /HC /F)	DIN 11851	DN15100	2540 бар	
	SMS 1146	14"	6 бар / 88,2 фунт/кв.дюйм изб	
Приварная втулка с внутренней резьбой	ISO 228	G½G2"	≥ 50 бар / 735	
(H250/RR /HC)	ASME B1.20.1	½2" NPT	фунт/кв.дюйм изб	
Втулка с внутренней резьбой (H250/RR /HC)	ISO 228	G½2"	≤ 50 бар	
со вставкой, прокладкой из FPM и накидной гайкой	ASME B1.20.1	½2" NPT	≤ 735 фунт/кв.дюйм изб	
Асептическое резьбовое присоединение	DIN 11864 - 1	DN1550	PN40	
(H250/F)		DN80100	PN16	
Асептический фланец (H250/F)	DIN 11864 - 2	DN1550	PN40	
		DN80DN100	PN16	

Расходомеры (H250/RR /HC) с обогревающим кожухом:								
Обогревающий кожух с фланцевым	EN 1092-1	DN15	PN40					
присоединением	ASME B16.5	1/2"	150 lb / RF					
Обогревающий кожух с соединением для Ermeto	-	E12	PN40					

Более высокое номинальное давление и другие присоединения по запросу

Болты и моменты затяжки

На измерительных приборах с футеровкой из PTFE или керамики и уплотнительной поверхностью из PTFE затягивать резьбу фланцев следует со следующим усилием:

Типоразмеры по EN

	Шпильки	Моменті	ы затяжки
Номинальный размер по EN 1092-1	Количество х размер	[Нм]	[фунт-фут]
DN15 PN40 ①	4x M12	9,8	7,1
DN25 PN40 ①	4x M12	21	15
DN50 PN40 ①	4x M16	57	41
DN80 PN16 ①	8x M16	47	34
DN100 PN16 ①	8x M16	67	48

① стандартные присоединения; другие присоединения по запросу

Типоразмер ASME

	Шпи	1ЛЬКИ	Моменты затяжки		
Номинальные размеры по	Количеств	во х размер	[Нм]	[фунт-фут]	
ASME B16.5	150 lb	300 lb			
½" 150 / 300 lb ①	4x ½"	4x ½"	5,2	3,8	
1" 150 / 300 lb ①	4x ½"	4x 5/8"	10	7,2	
2" 150 / 300 lb ①	4x 5/8"	8x 5/8"	41	30	
3" 150 / 300 lb ①	4x 5/8"	8x ¾"	70	51	
4" 150 / 300 lb ①	8x 5/8"	8x ¾"	50	36	

① стандартные присоединения; другие присоединения по запросу

Герметичность (вакуум) Н250/С

Макс. темпе	+70°C / +1	158°F	+150°C / +302°F		+250°C / +482°F			
					Мин. рабоч	ее давлени	e	
Типоразмер	Поплавок	Футеровка	[мбар абс]	[фунт/ кв.дюйм абс]	[мбар абс]	[фунт/ кв.дюйм абс]	[мбар абс]	[фунт/ кв.дюйм абс]
DN15DN100	PTFE	PTFE	100	1,45	-	-	-	-
DN15DN80	Керамика	PTFE	100	1,45	250	3,63	-	-
DN15DN80	Керамика	ТFМ / Керамика	100	1,45	100	1,45	100	1,45

18 www.krohne.com 08/2015 - 4004570901 - TD H250 M40 R03 ru

2.3 Диапазоны измерения

H250/RR - нержавеющая сталь, H250/HC - Хастеллой[®]

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°С / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

	Вода			Воздух			Макс. потеря давления					
Поплаво	Поплавок ► TIV CIV D		DIV	TIV Алюм.	TIV	DIV	TIV Алюм.	TIV	CIV	DIV		
Типоразмер	Конус		[л/ч]			[норм	ı.м ³ /ч]		[мбар]			
DN15, 1/2"	K 15.1	18	25	-	0,42	0,65	-	12	21	26	-	
	K 15.2	30	40	-	0,7	1	-	12	21	26	-	
	K 15.3	55	63	-	1	1,5	-	12	21	26	-	
	K 15.4	80	100	-	1,7	2,2	-	12	21	26	-	
	K 15.5	120	160	-	2,5	3,6	-	12	21	26	-	
	K 15.6	200	250	_	4,2	5,5	-	12	21	26	-	
	K 15.7	350	400	700	6,7	10	18 ①	12	21	28	38	
	K 15.8	500	630	1000	10	14	28 ①	13	22	32	50	
	K 15.8	-	-	1600 ②	-	-	50 ②	-	-	-	85	
DN25, 1"	K 25.1	480	630	1000	9,5	14	-	11	24	32	72	
	K 25.2	820	1000	1600	15	23	-	11	24	33	74	
	K 25.3	1200	1600	2500	22	35	-	11	25	34	75	
	K 25.4	1700	2500	4000	37	50	110 ①	12	26	38	78	
	K 25.5	3200	4000	6300	62	95	180 ①	13	30	45	103 ③	
DN50, 2"	K 55.1	2700	6300	8400	58	80	230 ①	8	13	74	60	
	K 55.2	3600	10000	14000	77	110	350 ①	8	13	77	69	
	K 55.3	5100	16000	25000	110	150	700 ①	9	13	84	104	
DN80, 3"	K 85.1	12000	25000	37000	245	350	1000 ①	8	16	68	95	
	K 85.2	16000	40000	64000	280	400	1800 ①	9	16	89	125	
DN100, 4"	K105.1	19000	63000	100 000	-	550	2800 ①	_	-	120	220	

① P >0,5 бар

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к

норм.л/ч или норм.м³/ч: Объёмный поток при стандартных условиях 0°С - 1,013 бар абс (DIN 1343)

② с поплавком TR

③ 300 мбар с системой демпфирования (измерение газов)

H250/RR - нержавеющая сталь, H250/HC - Хастеллой[®]

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°C / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

		Вода				Воздух		N	Макс. потеря давления		
Поплав	Поплавок ▶ TIV CIV DIV		TIV Алюм.	TIV	DIV	TIV Алюм.	TIV	CIV	DIV		
Типо- размер	Конус		[гал/ч]		[ста	[станд.куб.фут/мин]		[фунт/кв.дюйм изб]			
DN15, ½"	K 15.1	4,76	6,60	-	0,26	0,40	-	0,18	0,31	0,38	-
	K 15.2	7,93	10,6	-	0,43	0,62	-	0,18	0,31	0,38	-
	K 15.3	14,5	16,6	-	0,62	0,93	-	0,18	0,31	0,38	-
	K 15.4	21,1	26,4	-	1,05	1,36	-	0,18	0,31	0,38	-
	K 15.5	31,7	42,3	-	1,55	2,23	-	0,18	0,31	0,38	-
	K 15.6	52,8	66,0	-	2,60	3,41	-	0,18	0,31	0,38	-
	K 15.7	92,5	106	185	4,15	6,20	11,2 ①	0,18	0,31	0,41	0,56
	K 15.8	132	166	264	6,20	8,68	17,4 ①	0,19	0,32	0,47	0,74
	K 15.8	-	-	423 ②	-	-	31,0 ②	-	-	-	1,25
DN25, 1"	K 25.1	127	166	264	5,89	8,68	-	0,16	0,35	0,47	1,06
	K 25.2	217	264	423	9,30	14,3	-	0,16	0,35	0,49	1,09
	K 25.3	317	423	660	13,6	21,7	-	0,16	0,37	0,50	1,10
	K 25.4	449	660	1057	22,9	31,0	68,2 ①	0,18	0,38	0,56	1,15
	K 25.5	845	1057	1664	38,4	58,9	111 ①	0,19	0,44	0,66	1,51 ③
DN50 2"	K 55.1	713	1664	2219	36,0	49,6	143 ①	0,12	0,19	1,09	0,88
	K 55.2	951	2642	3698	47,7	68,2	217 ①	0,12	0,19	1,13	1,01
	K 55.3	1347	4227	6604	68,2	93,0	434 ①	0,13	0,19	1,23	1,53
DN80 3"	K 85.1	3170	6604	9774	152	217	620 ①	0,12	0,24	1,00	1,40
	K 85.2	4227	10567	16907	174	248	1116 ①	0,13	0,24	1,31	1,84
DN100 4"	K105.1	5019	16643	26418	-	341	1736 ①	-		1,76	3,23

① Р >7,4 фунт/кв.дюйм изб

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к станд.куб.фут/мин или станд.куб.фут/ч: Объёмный поток при стандартных условиях 15°C - 1,013 бар абс (ISO 13443)

② с поплавком TR

③ 4,4 фунт/кв.дюйм изб с системой демпфирования (измерение газов)

H250/C - керамика/PTFE

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°C / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

			Pad	ход		Макс. потеря давления			Я
		Вода		Воздух		Вода		Воздух	
Футер Попла		PTFE	Керамика	PTFE	Керамика	PTFE	Керамика	PTFE	Керамика
Типоразмер	Конус	[л/י	4]	[норм	.м ³ /ч]		[мбар]		
DN15, ½"	E 17,2	25	30	0,7	-	65	62	65	62
	E 17,3	40	50	1,1	1,8	66	64	66	64
	E 17,4	63	70	1,8	2,4	66	66	66	66
	E 17,5	100	130	2,8	4	68	68	68	68
	E 17,6	160	200	4,8	6,5	72	70	72	70
	E 17,7	250	250	7	9	86	72	86	72
	E 17,8	400	-	10	-	111	-	111	-
DN25, 1"	E 27,1	630	500	16	18	70	55	70	55
	E 27,2	1000	700	30	22	80	60	80	60
	E 27,3	1600	1100	45	30	108	70	108	70
	E 27,4	2500	1600	70	50	158	82	158	82
	E 27,5	4000 ①	2500	120	75	290	100	194	100
DN50, 2"	E 57,1	4000	4500	110	140	81	70	81	70
	E 57,2	6300	6300	180	200	110	80	110	80
	E 57,3	10000	11000	250	350	170	110	170	110
	E 57,4	16000 ①	-	-	-	284	-	-	-
DN80, 3"	E 87,1	16000	16000	-	-	81	70	-	-
	E 87,2	25000	25000	-	-	95	85	-	-
	E 87,3	40000 ①	-	-	-	243	-	-	-
DN100, 4"	E 107,1	40000	-	-	-	100	-	-	-
	E 107,2	60000 ①	-	-	-	225	-	-	-

① специальный поплавок

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к

норм.л/ч или норм.м³/ч: Объёмный поток при стандартных условиях 0°С - 1,013 бар абс (DIN 1343)

H250/C - керамика/PTFE

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°C / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

		Pac		сход		Макс. потеря давления			я
		Вода		Bo	здух	Вода		Воздух	
Футеровка	/ поплавок ▶	PTFE	Керамика	PTFE	Керамика	PTFE	Керамика	PTFE	Керамика
Типоразмер	Конус	[га	л/ч]	[станд.ку	б.фут/мин]		[фунт/кв.дюйм изб]		
DN15, ½"	E 17,2	6,60	7,93	0,43	-	0,94	0,90	0,94	0,90
	E 17,3	10,6	13,2	0,68	1,12	0,96	0,93	0,96	0,93
	E 17,4	16,6	18,5	1,12	1,49	0,96	0,96	0,96	0,96
	E 17,5	26,4	34,3	1,74	2,48	0,99	0,99	0,99	0,99
	E 17,6	42,3	52,8	2,98	4,03	1,04	1,02	1,02	1,02
	E 17,7	66,0	66,0	4,34	5,58	1,25	1,04	1,25	1,04
	E 17,8	106	-	6,2	-	1,61	-	1,61	-
DN25, 1"	E 27,1	166	132	9,92	11,2	1,02	0,80	1,02	0,80
	E 27,2	264	185	18,6	13,6	1,16	0,87	1,16	0,87
	E 27,3	423	291	27,9	18,6	1,57	1,02	1,57	1,02
	E 27,4	660	423	43,4	31,0	2,29	1,19	2,29	1,19
	E 27,5	1056 ①	660	74,4	46,5	4,21	1,45	2,81	1,45
DN50, 2"	E 57,1	1057	1189	68,2	86,8	1,18	1,02	1,18	1,02
	E 57,2	1664	1664	111,6	124	1,60	1,16	1,60	1,16
	E 57,3	2642	2906	155	217	2,47	1,60	2,47	1,60
	E 57,4	4226 ①	-	-	-	4,12	-	-	-
DN80, 3"	E 87,1	4227	4227	-	-	1,18	1,02	-	-
	E 87,2	6604	6604	-	-	1,38	1,23		-
	E 87,3	10567 ①	-	-	-	3,55	-		-
DN100, 4"	E 107,1	10567	-	-	-	1,45	-		-
	E 107,2	15850 ①	-	-	-	3,29	-		-

① специальный поплавок

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к станд.куб.фут/мин или станд.куб.фут/ч: Объёмный поток при стандартных условиях 15°C - 1,013 бар абс (ISO 13443)

Н250Н - монтаж в горизонтальном положении

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°С / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

EN	ASME	Конус	Вода [л/ч]	Воздух [норм.м ³ /ч]	Потери давления [мбар]
DN15	1/2	K 15.1	70	1,8	195
		K 15.2	120	3	204
		K 15.3	180	4,5	195
		K 15,4	280	7,5	225
		K 15.5	450	12	250
		K 15.6	700	18	325
		K 15.7	1200	30	590
		K 15,8	1600	40	950
		K 15,8	2400	60	1600
DN25	1"	K 25,1	1300	35	122
		K 25,2	2000	50	105
		K 25,3	3000	80	116
		K 25,4	5000	130	145
		K 25,5	8500	220	217
		K 25,5	10000	260	336
DN50	2"	K 55,1	10000	260	240
		K 55,2	16000	420	230
		K 55,3	22000	580	220
		K 55,3	34000	900	420
DN80	3"	K 85,1	25000	650	130
		K 85,2	35000	950	130
		K 85,2	60000	1600	290
DN100	4"	K 105,1	80000	2200	250
		K 105,1	120000	3200	340

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к

норм.л/ч или норм.м 3 /ч: Объёмный поток при стандартных условиях 0°С - 1,013 бар абс (DIN 1343)

Н250Н - монтаж в горизонтальном положении

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°С / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс

EN	ASME	Конус	Вода [гал/ч]	Воздух [станд.куб.фут/мин]	Потери давления [фунт/кв.дюйм изб]
DN15	1/2"	K 15,1	18,5	1,12	2,87
		K 15,2	31,7	1,86	3,00
		K 15,3	47,6	2,79	2,87
		K 15,4	74,0	4,65	3,31
		K 15,5	119	7,44	3,68
		K 15,6	185	11,2	4,78
		K 15,7	317	18,6	8,68
		K 15,8	423	24,8	14,0
		K 15,8	634	37,2	23,5
DN25	1"	K 25,1	343	21,7	1,79
		K 25,2	528	31,0	1,54
		K 25,3	793	49,6	1,71
		K 25,4	1321	80,6	2,13
		K 25,5	2245	136	3,19
		K 25,5	2642	161	4,94
DN50	2"	K 55,1	2642	161	3,53
		K 55,2	4227	260	3,38
		K 55,3	5812	360	3,23
		K 55,3	8982	558	6,17
DN80	3"	K 85,1	6604	403	1,91
		K 85,2	9246	589	1,91
		K 85,2	15851	992	4,26
DN100	4"	K 105,1	21134	1364	3,68
		K 105,1	31701	1984	5,00

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к станд.куб.фут/мин или станд.куб.фут/ч: Объёмный поток при стандартных условиях 15°C - 1,013 бар абс (ISO 13443)

H250U - монтаж в вертикальном положении

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°С / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс
Направление потока	вертикально вн	из	

EN	ASME	Конус	Вода [л/ч]	Воздух [норм.м ³ /ч]	Потери давления [мбар]
DN15	1/2"	K 15,1	65	1,6	175
		K 15,2	110	2,5	178
		K 15,3	170	4	180
		K 15,4	260	6	200
		K 15,5	420	10	220
		K 15.6	650	16	290
		K 15,7	1100	28	520
		K 15,8	1500	40	840
DN25	1"	K 25,1	1150	30	97
		K 25,2	1800	45	85
		K 25,3	2700	70	92
		K 25,4	4500	120	115
		K 25,5	7600	200	172
DN50	2"	K 55,1	9000	240	220
		K 55,2	15000	400	230
		K 55,3	21000	550	240

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Показания по расходу газов приведены к

норм.л/ч или норм.м³/ч: Объёмный поток при стандартных условиях 0°С - 1,013 бар абс (DIN 1343)

H250U - монтаж в вертикальном положении

Диапазон измерения:	10 : 1		
Значения расхода:	Значения = 100%	Вода: 20°C / 68°F	Воздух: 20°C / 68°F, 1,013 бар абс / 14,7 фунт/кв.дюйм абс
Направление потока	вертикально вн	из	

EN	ASME	Конус	Вода [гал/ч]	Воздух [станд.куб.фут/мин]	Потери давления [фунт/кв.дюйм изб]
DN15	1/2"	K 15,1	17,2	0,99	2,57
		K 15,2	29,1	1,55	2,62
		K 15,3	44,9	2,48	2,65
		K 15,4	68,7	3,72	2,94
		K 15,5	111	6,20	3,23
		K 15.6	172	9,92	4,26
		K 15,7	291	17,4	7,64
		K 15,8	396	24,8	12,3
DN25	1"	K 25,1	304	18,6	1,42
		K 25,2	476	27,9	1,25
		K 25,3	713	43,4	1,35
		K 25,4	1189	74,4	1,69
		K 25,5	2008	124	2,53
DN50	2"	K 55,1	2378	149	3,23
		K 55,2	3963	248	3,38
		K 55,3	5548	341	3,53

Рабочее давление для жидкостей должно превышать потери давления минимум в два раза, а для газов - не менее чем в пять раз. Указанные величины потерь давления действительны для воды и воздуха при максимальном расходе. Другие значения расхода по запросу. Преобразование данных для других сред или рабочих параметров выполняется при помощи метода расчёта, соответствующего требованиям директивы VDI/VDE 3513.

Нормальные условия при измерении расхода газов:

Измерение расхода газов приведено к станд.куб.фут/мин или станд.куб.фут/ч: Объёмный поток при стандартных условиях 15°C - 1,013 бар абс (ISO 13443)

26

3.1 Назначение прибора

Полная ответственность за использование измерительных приборов в соответствии с назначением и условиями применения, с учетом коррозионной устойчивости материалов по отношению к среде измерения, лежит исключительно на пользователе.

Производитель не несет ответственности за неисправность, которая является результатом ненадлежащего использования или применения изделия не по назначению.

Ротаметры предназначены для измерения чистых газов, паров и жидкостей.

Назначение прибора:

- Измеряемая среда не должна содержать каких бы то ни было ферромагнитных частиц или твёрдых веществ. В некоторых случаях может возникнуть необходимость установки магнитных или механических фильтров.
- Измеряемая среда должна быть достаточно жидкой и не содержать отложений.
- Необходимо избегать скачков давления и пульсации потока.
- Открывайте задвижки медленно. Не используйте задвижки с электромагнитным приводом.

Применяйте меры для устранения компрессионных вибраций во время измерения показателей газа:

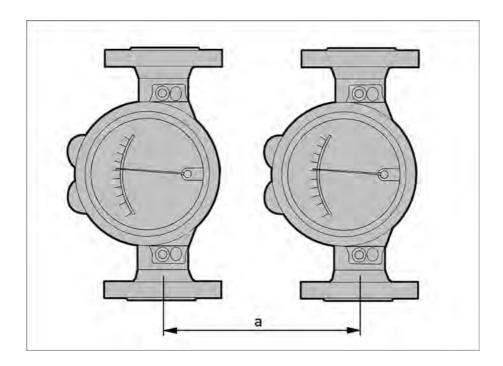
- Короткие отрезки трубы до следующего сужения потока
- Номинальный диаметр трубы не выше номинального размера прибора
- Использование поплавков с демпфированием
- Повышение рабочего давления (с учётом того, что при этом повысится плотность и изменится шкала)

Соблюдение условий монтажа в соответствии с требованиями VDI/VDE 3513-3

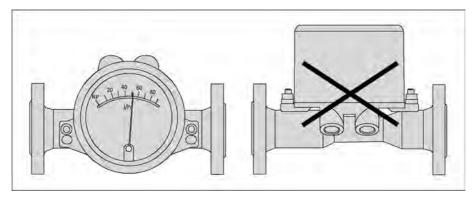
На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения.

Ответственность за применение измерительных приборов в отношении пригодности, использования по назначению и коррозионной устойчивости используемых материалов к измеряемой среде возлагается исключительно на эксплуатирующую организацию. За повреждения, возникшие вследствие использования не по назначению, изготовитель не несёт никакой гарантийной ответственности.

не используйте агрессивные среды с твёрдыми включениями или высокой вязкостью.


3.2 Условия установки

При монтаже прибора в трубопровод необходимо соблюдать следующие указания:


- Ротаметр необходимо устанавливать в вертикальном положении (принцип измерения).
 Направление потока снизу вверх. Рекомендации по установке представлены также в директиве VDI/VDE 3513, лист 3.
 - Приборы H250H устанавливаются в горизонтальном положении, а устройства H250U устанавливаются в вертикальном положении с направлением потока сверху вниз.
- Рекомендуется обеспечить наличие прямого входного участка без препятствий $\geq 5x$ DN до прибора и прямого участка на выходе $\geq 3x$ DN после прибора.
- Винты, болты и прокладки предоставляются заказчиком и должны быть выбраны с учётом номинального давления присоединения или рабочего давления.
- Внутренний диаметр фланца отличается от стандартных размеров. Фланцевые уплотнения, соответствующие DIN 2690, можно применять без каких-либо ограничений.
- Правильно расположите уплотнительные прокладки. Затяните гайки с усилием затяжки, соответствующим номинальному давлению.
 - Информация по приборам с футеровкой из PTFE или керамики и уплотнительной поверхностью из PTFE представлена в разделе "Усилия затяжки".
- Устройства управления должны устанавливаться после измерительного прибора.
- Отсечные устройства предпочтительнее устанавливать до измерительного прибора.
- Перед подключением продуйте или промойте ведущие к прибору трубы.
- Перед установкой прибора следует осушить газовые трубы.
- Используйте присоединения, подходящие для определённой версии прибора.
- Отцентрируйте трубопровод и отверстия присоединений измерительного прибора по оси во избежание возникновения в них напряжения.
- При необходимости трубопровод следует установить на опоры, чтобы снизить передачу вибрации на измерительный прибор.
- Не прокладывайте сигнальные кабели в непосредственной близости от кабелей питания.

Минимальное расстояние между приборами

В случае последовательного монтажа нескольких приборов необходимо обеспечить минимальное расстояние между приборами > 300 мм.

Обратите особое внимание на монтажное положение прибора Н250Н с горизонтальным направлением потока:

Для соответствия температурным параметрам и точности измерения расходомеры Н250Н для монтажа в горизонтальном положении должны монтироваться в трубопровод таким образом, чтобы дисплей располагался сбоку измерительной трубы. Указанные максимальные температуры измеряемой и окружающей среды, а также погрешность измерения основаны на боковом монтажном положении индикатора.

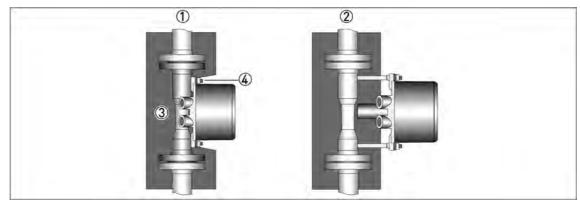
3.2.1 Усилия затяжки

На измерительных приборах с футеровкой из PTFE или керамики и уплотнительной поверхностью из PTFE затягивать резьбу фланцев следует со следующим усилием:

Типоразмер согласно			Шпильки			Макс. момент затяжки				
EN 1	092-1	ASME B 16.5		EN	ASME		EN 1092-1		ASME 150 lb	
DN	PN	Дюйм	lb		150 lb	300 lb	Нм	фут* фунт силы	Нм	фут* фунт силы
15	40	1/2"	150/300	4x M12	4x ½"	4x ½"	9,8	7,1	5,2	3,8
25	40	1"	150/300	4x M12	4x ½"	4x 5/8"	21	15	10	7,2
50	40	2"	150/300	4x M16	4x 5/8"	8x 5/8"	57	41	41	30
80	16	3"	150/300	8x M16	4x 5/8"	8x ¾"	47	34	70	51
100	16	4"	150/300	8x M16	8x 5/8"	8x ¾"	67	48	50	36

3.2.2 Магнитные фильтры

Если в рабочем продукте содержатся восприимчивые к магнитному полю частицы, рекомендуется использовать магнитные фильтры. Магнитный фильтр следует устанавливать по направлению потока до расходомера. Стержневые магниты в фильтре расположены по спирали для обеспечения оптимальной эффективности при малом падении давления. Для защиты от коррозии все магниты по отдельности покрыты тефлоном (PTFE). Материал: 1.4404/316L


Магнитные фильтры

- ① Тип F фитинг с фланцем общая длина 100 мм / 4"
- Тип FS фитинг без фланца общая длина 50 мм / 2"

3.2.3 Теплоизоляция

Тепловая изоляция корпуса индикатора не допускается. Тепловая изоляция ③ может доходить только до крепления корпуса ④.

- ① Стандартный индикатор М40
- ② Индикатор с высокотемпературным (НТ) удлинителем

Тепловая изоляция 🗇 может доходить только до задней части корпуса ②. Должен быть обеспечен свободный доступ к области вокруг кабельных вводов ③.

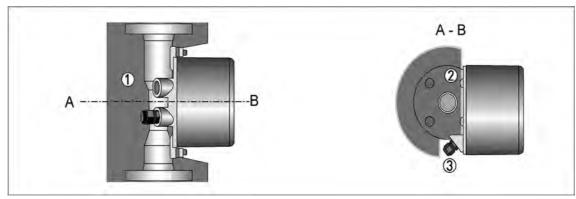


Рисунок 3-1: Изоляция - поперечное сечение

3.2.4 Система демпфирования поплавка

Система демпфирования поплавка характеризуется высокой устойчивостью и способностью к самоцентрированию. Демпфирующий цилиндр изготавливается из высококачественной керамики или РЕЕК, в зависимости от измеряемой среды и условий применения. Прибор может быть дооснащён системой демпфирования поплавка (смотрите раздел "Сервис").

Использование системы демпфирования

- Обычно при использовании поплавков типа CIV и DIV для измерения газов.
- Для поплавков типа TIV (только для H250/RR и H250/HC) при следующем начальном рабочем давлении:

Типоразмер в	соответствии с	Начальное рабочее давление		
EN 1092-1	ASME B16.5	[бар]	[фунт/кв.дюйм изб]	
DN 50	1/2"	≤0,3	≤4,4	
DN25	1"	≤0,3	≤4,4	
DN50	2"	≤0,2	≤2,9	
DN80	3"	≤0,2	≤2,9	
DN 100	4"	≤0,2	≤2,9	

3.2.5 Система демпфирования стрелочного указателя прибора

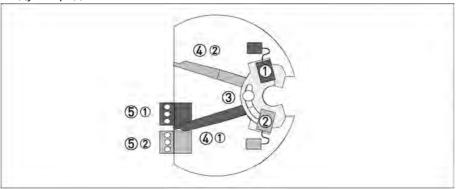
Как правило, устройство индикации с его магнитной системой содержит демпфер индикатора. Дополнительная индукционная система торможения эффективна в случае нестабильных или пульсирующих потоков. Индукционная система торможения окружает магнитным полем флажок стрелки-указателя, не касаясь его, и гасит его колебания. В результате стрелка-указатель занимает гораздо более спокойное положение, не искажая результат измерения. Стяжная муфта обеспечивает надлежащую посадку. Индукционная система торможения может быть установлена при дооснащении прибора в процессе его эксплуатации без необходимости перекалибровки (смотрите раздел "Сервис").

- ① Индукционная система торможения
- ② Лопасть указателя
- 3 Кронштейн
- ④ Цилиндр указателя

4.1 Указания по технике безопасности

Проведение любых работ, связанных с электрическим монтажом оборудования, допускается только при отключенном электропитании. Обратите внимание на значения напряжения, приведённые на типовой табличке!

Соблюдайте действующие в стране нормы и правила работы и эксплуатации электроустановок! На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения. Региональные правила и нормы по охране труда подлежат неукоснительному соблюдению. К любым видам работ с электрическими компонентами измерительного прибора допускаются исключительно специалисты, прошедшие соответствующее обучение.

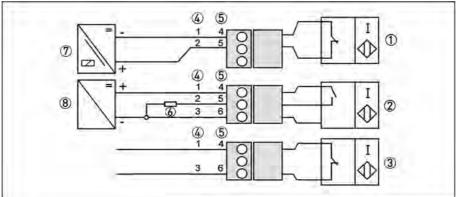

Проверьте соответствие данных на типовой табличке прибора с указанными в спецификации. Проверьте правильность напряжения питания, значение которого выбито на типовой табличке.

4.2 Электрические присоединения индикатора М40

4.2.1 Предельные выключатели К1/К2

На индикатор М40 может быть установлено максимум два электронных предельных выключателя. Предельный выключатель работает как щелевой датчик, приводимый в действие индуктивно при помощи полукруглого металлического лепестка, являющегося частью указателя. Точки переключения настраиваются с помощью контактного указателя. Положение контактного указателя отображается на шкале.

Модуль предельного выключателя


- ① Контакт Мин.
- Контакт Макс.
- ③ Стопорный винт
- 4 Указатель максимума
- б) Соединительная клемма

Соединительные клеммы имеют разъёмную конструкцию и могут быть сняты при подключении кабелей. Типы встроенных предельных выключателей показаны на индикаторе.

Электрическое подключение предельных выключателей

Контакт	МИН			MAKC		
Клемма №	1	2	3	4	5	6
Подключение 2-проводное NAMUR	-	+		-	+	
Подключение 3-проводное	+		-	+		-
Подключение геркона SPST	+		-	+		-

Соединительные клеммы предельного выключателя

- ① 2-проводный предельный выключатель NAMUR
- 2 3-проводный предельный выключатель
- ③ Герконовый предельный выключатель SPST
- 4 Контакт Мин. клеммного соединения
- ⑤ Контакт Макс. клеммного соединения
- 6 3-проводная нагрузка
- Поммутирующий разделительный усилитель NAMUR
- ⑧ 3-проводный источник питания

Настройка предела

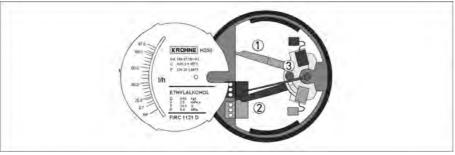
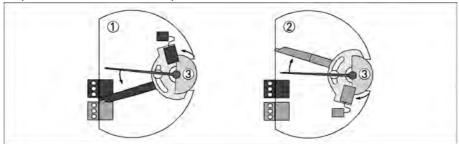


Рисунок 4-1: Параметры предельного выключателя

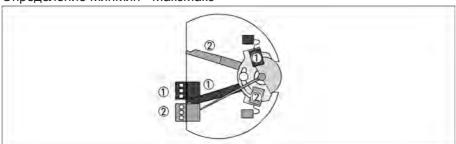

- ① Контактный указатель МАКС.
- ② Контактный указатель МИН.
- ③ Стопорный винт

Настройка выполняется непосредственно через контактные указатели ① и ②:

- Сдвиньте шкалу.
- Слегка ослабьте стопорный винт 3.
- Сдвиньте шкалу обратно до защёлкивания.
- Установите контактные указатели ① и ② на требуемую точку переключения.

После выполнения настройки зафиксируйте контактные указатели с помощью стопорного винта ③.

Определение контактов переключателя



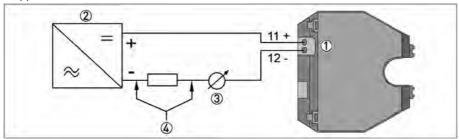
- ① Контакт МИН.
- ② Контакт МАКС.
- ③ Лепесток указателя с переключающим лепестком

Если лепесток измерительного указателя входит в щель, срабатывает сигнализация. Если лепесток указателя находится за пределами щелевого датчика, к включению сигнала также приводит обрыв провода в цепи NAMUR.

3-проводный предельный выключатель не имеет функции обнаружения обрыва провода.

Определение МинМин - МаксМакс

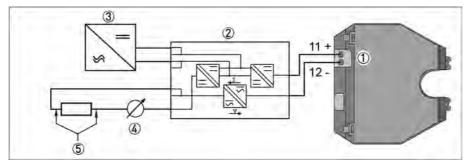
- ① Контакт МИН.2 или контакт МАКС.1
- ② Контакт МИН.1 или контакт МАКС.2


Потребляемый ток в показанном положении:

Контактная информация	Тип	Ток
МИН 1	NAMUR	≤ 1 mA
МИН 2	NAMUR	≤ 1 mA
MAKC 1	NAMUR	≥ 3 mA
MAKC 2	NAMUR	≥ 3 mA

4.2.2 Токовый выход ESK4 / ESK4A

Соединительные клеммы выхода ESK4 / ESK4A имеют разъёмную конструкцию и могут быть сняты при подключении кабелей.


Подключение ESK4 / ESK4A

- ① Токовый выход ESK4/ESK4A
- ② Напряжение питание 14...30 В пост. тока
- ③ Измерительный сигнал 4...20 мА
- Внешняя нагрузка, связь по протоколу НАРТ®

Источник питания М40 с гальванической изоляцией

Планировать разводку кабелей следует с особой тщательностью, особенно когда это касается подключения других приборов, таких как вычислительные блоки или устройства управления технологическим процессом. Внутренние подключения в таких устройствах (например, заземление с защитным проводником, контуры заземления на массу) могут привести к появлению недопустимых значений потенциала напряжения, что может негативно влиять на работу как самого преобразователя, так и прибора, подключенного к нему. В таких случаях рекомендуется использовать систему безопасного сверхнизкого напряжения (БСНН).

- ① Присоединительная клемма
- ② Устройство развязки питания преобразователя сигналов с электрической изоляцией
- Осточник питания (смотрите сведения по устройству развязки питания)
- ④ Измерительный сигнал 4...20 мА
- ⑤ Внешняя нагрузка, связь по протоколу HART®

Источник питания

Напряжение источника питания должно быть в пределах от 14 до 30 В пост. тока. Оно зависит от общего сопротивления измерительного контура. Чтобы рассчитать общее сопротивление, необходимо сложить сопротивления каждого компонента в измерительном контуре (за исключением измерительного прибора).

Требуемое напряжение питания можно рассчитать по приведённой ниже формуле:

$$U_{\text{внеш.}} = R_{\text{Нагр.}} \cdot 24 \text{ мA} + 14 \text{ B}$$

где

 $U_{\text{внеш.}}$ = минимальное напряжение питания и

R_{Нагр.} = общее сопротивление измерительного контура.

Минимальный допустимый ток на выходе источника питания должен составлять 30 мА.

Связь по протоколу HART®

Связь с ESK4 по протоколу HART® никоим образом не влияет на передачу измеренных аналоговых данных (4...20 мA).

Исключением является работа в многоточечном режиме. В многоточечном режиме допускается параллельное управление максимально 15 устройствами с поддержкой функции HART®, при этом соответствующие токовые выходы выключаются (І прибл. 4,5 мА на устройство).

Нагрузка для связи по протоколу HART®

Для связи по протоколу $HART^{@}$ необходима нагрузка минимум 230 Ом.

Максимальное сопротивление нагрузки рассчитывается следующим образом:

$$R_L = \frac{U_{\text{ext.}} - 14V}{24 \, \text{mA}}$$

Чтобы предотвратить помехи для выходного сигнала постоянного тока, используйте витой двужильный кабель.

В некоторых случаях может потребоваться экранированный кабель, если предполагается уровень шума выше, чем указано в требованиях NE21.

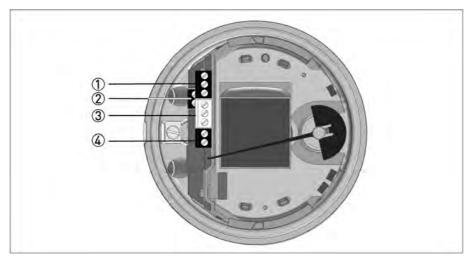
Конфигурация

Конфигурация ESK может быть выполнена по протоколу HART $^{\otimes}$. Для настройки параметров можно использовать DD (файлы описания устройств) для AMS и PDM, а также DTM (управляющая программа типа устройств) для PACTware $^{\text{TM}}$. Файлы можно загрузить с веб-сайта компании бесплатно.

Данные о текущем расходе могут быть переданы по встроенному протоколу HART[®]. Возможна настройка счётчика расхода. Возможен контроль двух предельных значений. Предельные значения назначаются для расхода или для переполнения счётчика.

Самотестирование - Диагностика

В процессе запуска и работы в ESK4 / ESK4A циклически выполняются различные диагностические функции, обеспечивающие надёжное функционирование прибора. При обнаружении ошибки на аналоговом выходе активируется сигнал отказа (превышение максимального значения тока) (ток > 21 мA, обычно 22 мA). Кроме того, более подробная информация может быть запрошена по протоколу HART® (СМD#48). В случае информационных сообщений и предупреждений сигнал отказа не активируется.


Функции диагностики (Мониторинг):

- Достоверность данных энергонезависимого ОЗУ
- Достоверность данных ПЗУ
- Рабочий диапазон внутреннего эталонного напряжения
- Обнаружение сигнала диапазона измерений встроенных датчиков
- Температурная компенсация встроенных датчиков
- Калибровка в соответствии с условиями применения
- Достоверность подсчитанного значения
- Достоверность физической единицы, системной и выбранной единицы

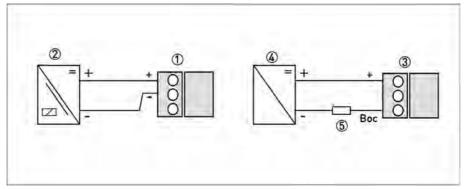
В случае ESK4A (HART 7) протокол диагностики выполняется в соответствии с NE107.

4.2.3 Предельные выходные сигналы ESK4-T

После откручивания крышки корпуса шкалу можно снять. Соединительные клеммы имеют разъёмную конструкцию и могут быть сняты при подключении кабелей.

- ① Бинарный выход 1
- ② Источник питания / токовый выход ESK4 / ESK4A
- ③ Бинарный выход 2
- ④ Бинарный вход

Бинарные входы/выходы электрически изолированы друг от друга и от токового выхода ESK4 / ESK4A.


Бинарные входы/выходы могут работать, только если к клеммам 11+ и 12- ESK4 / ESK4A подключен источник питания. Бинарные входы/выходы поставляются неактивными по умолчанию и должны быть активированы перед началом работы (смотрите раздел "Меню ESK4-T").

Подключение бинарных выходов

В соответствии с передачей необходимых сигналов выберите один из следующих типов соединения для бинарных выходов В1 и В2:

- NAMUR (интерфейс постоянного тока согласно EN 60947-5-6)
- Транзисторный выход (пассивный, с открытым коллектором)

Бинарный выход	B1		B2			
Клемма №	1	2	3	4	5	6
Подключение NAMUR	+	-		+	-	
Подключение транзисторного выхода	+		B _{OC}	+		B _{OC}

- ① Клеммное соединение NAMUR
- ② Коммутирующий разделительный усилитель
- ③ Клеммное соединение коммутационного выхода ОС
- ④ Напряжение питания U_{внеш.}
- ⑤ Нагрузка R_{Нагр}.

Диапазон значений NAMUR

	Нормально замкнутый	Нормально разомкнутый
Значение переключения достигнуто	≤ 1 mA	> 3 mA
Значение переключения не достигнуто	> 3 мА	≤ 1 mA

Диапазон значений применяется только при соединении с барьером для переключателей со следующими эталонными значениями параметров:

- Напряжение в открытом контуре $U_{вых.}$ = 8,2 В пост. тока
- Внутреннее сопротивление R_{внутр.} = 1 кОм

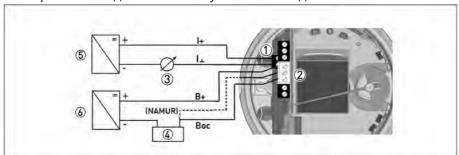
Диапазон значений для транзисторного выхода

Сигнальные значения	U _{Них}	_{к.} [B]	U _{Bepx.} [B]	
напряжения	нижний предел	верхний предел	нижний предел	верхний предел
через нагрузку R _{Нагр.}	0	2	16	30

Сигнальный ток	I _{Ниж.} [мА]		I _{Bepx.} [мА]	
	нижний предел	верхний предел	нижний предел	верхний предел
Категория 2	0	2	20	110

Чтобы обеспечить установленный диапазон значений, для пассивного транзисторного выхода с номинальным напряжением 24 В пост. тока рекомендуется применить нагрузочное сопротивление R_{Нагр.} от 250 Ом до 1 кОм.

Использовать другие значения нагрузки рекомендуется с осторожностью, так как диапазон значений напряжения сигналов больше не будет соответствовать диапазону значений входных сигналов автоматизированных систем управления технологическим процессом и средств управления (DIN IEC 946).


He допускается превышать верхний предел сигнального тока, так как это может привести к повреждению транзисторного выхода.

4.2.4 Импульсный выход ESK4-T

Бинарные выходы могут также работать в импульсном режиме. При использовании бинарных выходов в качестве импульсных, требуются две отдельных сигнальных цепи. Для каждой сигнальной цепи необходим отдельный источник питания.

Общее сопротивление $extit{@}$ следует настроить таким образом, чтобы общий ток $I_{\text{общ.}}$ не превышал 100 мА.

Электрическое подключение импульсного выхода

- ① Клемма источника питания—токовый выход
- ② Клемма В2
- ③ Измерение расхода 4...20 мА
- 4 Нагрузка импульсного выхода, например, счетчик
- ⑤ Источник питания ESK4
- 6 Источник питания импульсного выхода

Импульсный выход B2 является пассивным выходом с "открытым коллектором", который электрически изолирован от токового выхода и выхода B1. Им можно управлять как низкоомным выходом или как выходом NAMUR.

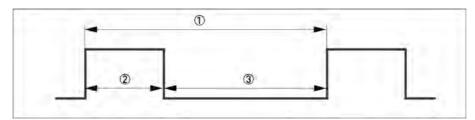
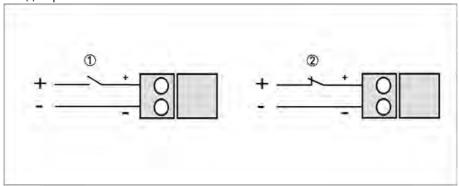


Рисунок 4-2: Импульсный выход передачи данных

- ① f_{макс.} = 10 Гц
- t_{вкл.}
- З t_{выкл}

Ширина импульса $t_{\text{вкл.}}$ может быть настроена на 50...500 мс в меню индикатора.


4.2.5 Бинарный вход ESK4-T

Дискретный вход может использоваться для контроля внутреннего счётчика расхода (пуск/стоп/сброс)

Диапазон значений для NAMUR

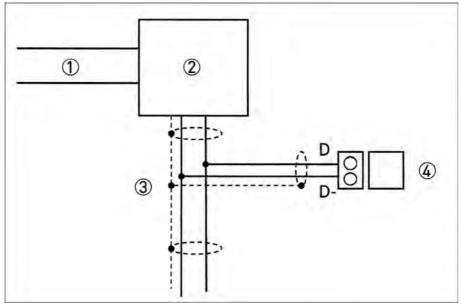
Бинарный вход	В3		
Клемма №	7	8	
Подключение	+	-	

Вход сброса

- ① Активная функция ВЫС.
- ② Активная функция НИЗ.

Данный бинарный вход можно активировать в меню индикатора и настроить как ACTIVE HI (Актив._верх.) или ACTIVE LO (Актив._ниж.)

Если вход настроен как ACTIVE LO (Актив._ниж.), то в случае прерывания счётчик должен быть сброшен.

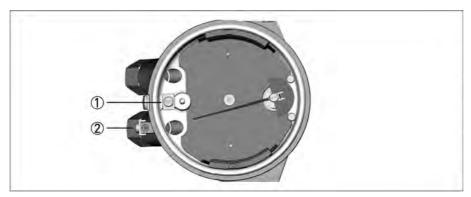

Порядок настройки каждой функции представлен в разделе 6.6 Меню ESK4-T.

Диапазон значений

Входное напряжение	U _{Ниж.} [В]		U _{Bepx.} [B]	
	нижний предел	верхний предел	нижний предел	верхний предел
Клемма (7) (8)	0	2	16	30

Внутреннее сопротивление бинарного входа Явнутр. составляет 20 кОм.

4.2.6 Коммуникационный протокол ESK4-FF / ESK4-PA



- ① Шина FF HSE / Profibus DP
- ② Шлюзовое устройство / шиносоединительный выключатель
- ③ Шина FF H1 / Profibus PA, 2-проводная с экранированием
- 4 H250/M40/ESK4-FF / H250/M40/ESK4-PA

ESK4-FF / ESK4-PA

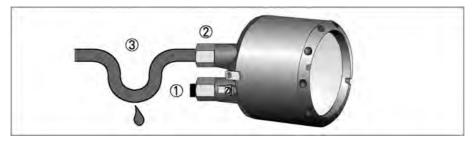
- 2-проводная связь с питанием от шины
- С защитой от обратной полярности
- Напряжение шины 9...32 В пост. тока
- Номинальный ток 16 мА

4.3 Подключение заземления

- ① Клемма заземления внутри индикатора
- Внешняя клемма заземления

Кабель заземления не должен передавать сигналы помех.

Запрещается заземлять с помощью данного кабеля какие бы то ни было другие электрические приборы.


4.4 Степень защиты

Измерительный прибор соответствует всем требованиям степени защиты IP66/68.

После выполнения всех работ по обслуживанию и профилактике измерительного прибора нужно обеспечить восстановление указанной степени защиты.

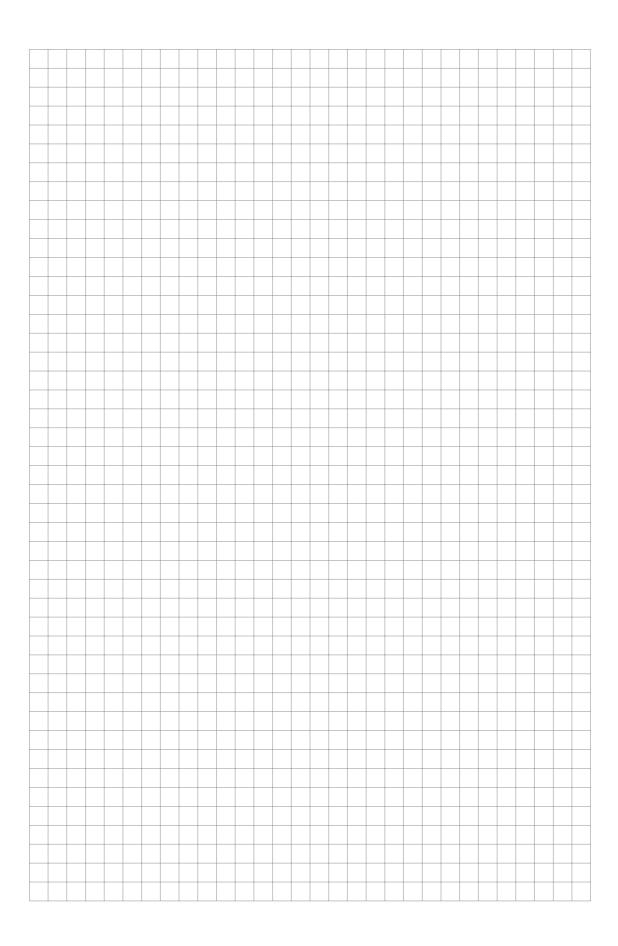
В связи с изложенным выше, необходимо соблюдать следующие требования:

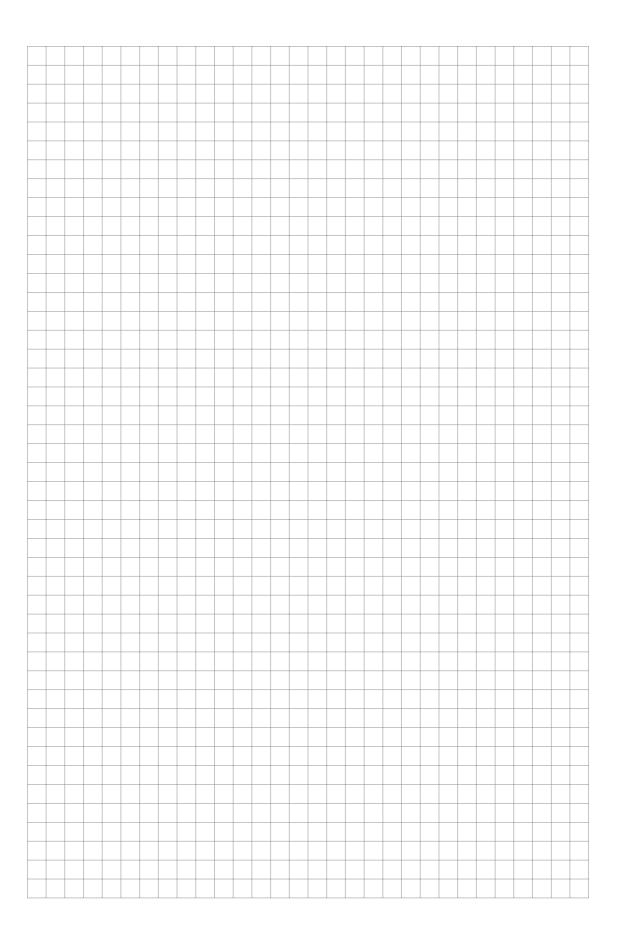
- Используйте только оригинальные уплотнительные прокладки. Они должны быть чистыми и не иметь повреждений. Повреждённые уплотнительные прокладки следует заменить.
- Электрические кабели должны соответствовать нормативным требованиям и не иметь повреждений.
- Кабели должны быть проложены таким образом, чтобы перед прибором образовалась петля ③ для защиты от попадания влаги в корпус прибора.
- Кабельные вводы ② должны быть плотно ввинчены.
- Закройте неиспользуемые кабельные вводы при помощи заглушек ①.

- ① При отсутствии кабеля закрыть заглушками.
- ② Плотно затяните гайку кабельного ввода
- ③ Укладывать кабель с провисанием

Для улучшения обслуживания предоставьте нам следующую информацию:

Характеристики прибора


Тип технологического присоединения:					
Номинальный диаметр присоединения:					
Номинальное давление:					
Уплотнительная поверхность:					
Материал трубопровода:					
Варианты индикатора:	_ K1: _ K2: _ ESK4: _ ESK4-T: _ ESK4-FF: _ ESK4-PA:	1 предельный выключатель 2 предельных выключателя 420 мА / HART [®] 420 мА / HART [®] / ЖК-дисплей, импульсный выход Foundation Fieldbus Profibus PA			
	_ M40 _ M40S _ M40R		пойное порошково	е покрытие (полизо е покрытие (эпокси	
Сертификаты:	_ нет	_ ATEX / IECEx	_ FM / FMc	_ NEPSI	_ другое:
		·			


Номинальные характеристики

Наименование продукта:		
Рабочее давление:	_ Абсолютное давление	_ Избыточное давление
Номинальное давление:		
Рабочая температура:		
Номинальная температура:		
Плотность:	_ Стандартная плотность	_ Рабочая плотность
Вязкость:	·	
Диапазон измерения расхода:		
Примечания:		

Контактная информация

Организация:	
Контактное лицо:	
Номер телефона:	
Номер факса:	
E-Mail:	

KROHNE Россия

Самара Самарская обл., Волжский р-н, пос. Стромилово Почтовый адрес: Россия, 443065, г. Самара, Долотный пер., 11, а/я 12799 Тел.: +7 846 230 047 0 Факс: +7 846 230 031 3 samara@krohne.su

Москва 115280, г. Москва, ул. Ленинская Слобода, 19 Бизнес-центр «Омега Плаза» Тел.: +7 499 967 779 9 Факс: +7 499 519 619 0 moscow@krohne.su

Санкт-Петербург 195112, г. Санкт-Петербург, Малоохтинский пр-т, 68 Бизнес-центр «Буревестник», оф. 418 Тел.: +7 812 242 606 2 Факс: +7 812 242 606 6 peterburg@krohne.su

Краснодар 350000, г. Краснодар, ул. Им.Буденного, 117/2, оф. 301, Здание «КНГК» Тел.: +7 861 201 933 5 Факс: +7 499 519 619 0 krasnodar@krohne.su

Красноярск 660098, г. Красноярск, ул. Алексеева, 17, оф. 380 Тел.: +7 391 263 697 3 Факс: +7 391 263 697 4 krasnoyarsk@krohne.su Иркутск 664007, г. Иркутск, ул. Партизанская, 49, оф.72 Тел.: +7 3952 798 595 Тел. / Факс: +7 3952 798 596 irkutsk@krohne.su

Салават 453261, Республика Башкортостан, г. Салават, ул. Ленина, 3, оф. 302 Тел.: +7 3476 355 399 salavat@krohne.su

Сургут 628426, ХМАО-Югра, г. Сургут, пр-т Мира, 42, оф. 409 Тел.: +7 3462 386 060 Факс: +7 3462 385 050 surgut@krohne.su

Хабаровск 680000, г. Хабаровск, ул. Комсомольская, 79A, оф.302 Тел.: +7 4212 306 939 Факс: +7 4212 318 780 habarovsk@krohne.su

Ярославль 150040, г. Ярославль, ул. Победы, 37, оф. 401 Бизнес-центр «Североход» Тел.: +7 4852 593 003 Факс: +7 4852 594 003 yaroslavl@krohne.su

КРОНЕ-Автоматика

Самарская обл., Волжский р-н, пос. Стромилово Тел.: +7 846 230 037 0 Факс: +7 846 230 031 1 kar@krohne.su

Сервисный центр

Беларусь, 211440, г. Новополоцк, ул. Юбилейная, 2а, оф. 310
Тел. / Факс: +375 214 537 472
Тел. / Факс: +375 214 327 686
Моб. в Белорусии: +375 29 624 459 2
Моб. в России: +7 903 624 459 2
service@krohne.su
service-krohne@vitebsk.by

KROHNE Казахстан

050020, г. Алматы, пр-т Достык, 290 а Тел.: +7 727 356 277 0 Факс: +7 727 356 277 1 almaty@krohne.su

KROHNE Беларусь

230023, г. Гродно, ул. 17 Сентября, 49, оф. 112 Тел.: +375 152 740 098 Тел. / Факс: +375 172 108 074 kanex_grodno@yahoo.com

KROHNE Украина

03040, г. Киев, ул. Васильковская, 1, оф. 201 Тел.: +380 44 490 268 3 Факс: +380 44 490 268 4 krohne@krohne.kiev.ua

KROHNE Узбекистан

100000, г. Ташкент, 1-й Пушкинский пр-д, 16 Тел. / Факс: +998 71 237 026 5 sterch@xnet.uz

