

ПРОИЗВОДСТВО И ПРОДАЖА ПОЛИПРОПИЛЕНОВЫХ ТРУБ И ФИТИНГОВ

Инструкция по монтажу

Система полипропиленовых труб и фитингов

2012

1. Введение.

Настоящий каталог содержит сведения о свойствах, ассортименте и способах монтажа напорных трубопроводов из высокомолекулярного статического сополимера пропилена с этиленом с низкой текучестью расплава (материал PPRC). Материал PPRC характеризуется повышенной термостойкостью, хорошей устойчивостью к водным растворам солей и неорганическим кислотам, не обладающими окислительными свойствами, а также воздействию щелочей, органических кислот, спиртов или эфиров.

Химический состав материалов PPRC соответствует нормативным требованиям, предъявляемым к материалам, находящимся в контакте с питьевой водой.

Напорные трубопроводы из труб и фасонных частей, изготовленных из статического сополимера PPRC, могут эксплуатироваться при повышенных температурах и применяться в системах водоснабжения, отопления, и технологических трубопроводах в соответствии с действующими стандартами и техническими условиями. Механические и термические свойства материала PPRC используемого при изготовлении труб и фитингов приведены в Таблице 1.

Основные физико-механические свойства материала PPR-C (Тип 3):

Таблица 1

Наименование	Методика измерений	Единицы измерений	Величина
Плотность	ISO/R 1883 ΓΟCT15139 - 69	г/см ³	более 0,9
Температура плавления	ГОСТ 21553-76	°C	более 146
Средний коэффициент линейного теплового расширения	ГОСТ 15173-70	мм/м	1,5×10 ⁻⁴
Предел текучести при растяжении	ISO/R 527 ΓΟCT 11262 - 80	H/mm²	22-23
Предел прочности при разрыве	ISO/R 527 ΓΟCT 11262-80	H/mm²	34-35
Относительное удлинение при разрыве	ISO/R 527 ΓΟCT 11262 - 80	%	более 500
Теплопроводность	DIN 52612	Вт/м °С	0,23
Удельная теплоемкость	ГОСТ 23630,1-79	КДж/кг °С	1,73

Минимальная длительная прочность (MRS) материала PPRC согласно стандартам ISO/DIS 12162, 2/SEM-ISO/TR 9080 при температуре 20° C и сроке эксплуатации 50 лет MRS равна 8,0 МПа.

Эталонные кривые длительной прочности труб из PPR 80 приведены на рисунке 1 (ГОСТ Р 52134-2003).

Пожарно-технические характеристики материала согласно принятой классификации (ГОСТ 30244-99, ГОСТ 30402-96, ГОСТ Р 51032-97, ГОСТ 12.1.044-89, СНиП 21-01-97) приведены в Таблице 2.

Таблица 2

Пожарно-технические характеристики	Группа
Группа горючести	Γ4
Группа воспламеняемости	B 3
Дымообразующая способность	Д 3
Токсичность продуктов горения	T 3

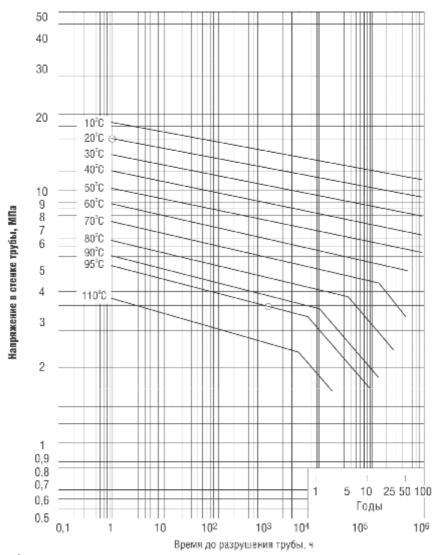


Рисунок 1 Эталонные кривые длительной прочности труб из PP-R 80

Температура воспламеняемости материала PPRC около 325°C. Кислородный индекс (показатель горючести) около 20%.

Удельное объемное электрическое сопротивление (p_v) составляет 10^{-15} - 10^{-16} Ом·м. Основными преимуществами использования сополимера PPRC для изготовления трубопроводов являются: большой срок службы (расчетный не менее 50 лет); сравнительно низкие потери на трение жидкостей в трубах (коэффициент эквивалентной равномерно зернистой шероховатости $K_{\mathfrak{g}}=0,00002m$); быстрый и

простой монтаж методом полиффузной сварки, а также с использованием комбинированных резьбовых и фланцевых соединений.

Производственная компания КОНТУР производит трубы и фитинги из сополимера пропилена с этиленом PP-R 80 в соответствии с техническими условиями, содержащимися в ГОСТ Р 52134-2003.

2. Основные термины и определения

Номинальный наружный диаметр d_n, мм: Условный размер, соответствующий минимально допустимому значению среднего наружного диаметра трубы.

Номинальная толщина стенки е, мм: Условный размер, соответствующий минимально допустимой толщине стенки трубы в любой точке ее поперечного сечения. **Расчетное напряжение O_s, МПа:** Допустимое напряжение в стенке трубы в течении 50 лет при температуре 20° C с учетом коэффициента запаса C.

$$\sigma_s = MRS/C$$

Коэффициент запаса прочности С: Безмерная величина, учитывающая особенности эксплуатации трубопровода отличающиеся от заданных при расчете MRS.

Минимальное значение коэффициента запаса прочности труб из материала PPRC равно: при температуре 20° C в течении 50 лет при статическом давлении воды C=1,25; при рабочей температуре $(T_{pa6.})$ — C=1,5; максимальной рабочей $(T_{max.})$ — C=1,3; аварийной, возникающей в аварийных ситуациях при нарушении систем регулирования $(T_{aвар.})$ — C=1,0.

Стандартное размерное отношение SDR: Безразмерная величина, численно равная отношению номинального наружного диаметра трубы (\mathbf{d}_n) к номинальной толщине стенки (\mathbf{e}) .

Серия труб S: Безразмерная величина, определяемая как отношение расчетного напряжения σ_s к максимально допустимому рабочему давлению (ρ_{PMS})

$$S = \sigma_S / P_{PMS} = (SDR - 1) / 2$$

Максимальное допустимое рабочее давление Р_{PMS}: Максимальное значение постоянного внутреннего давления воды в трубе при температуре 20° С в течении 50 лет, округленное по ГОСТ 8032 до ближайшего нижнего значения ряда R10, если это значение более 1,0МПа, или ряда R20, если оно более 2,0МПа. Для классификации труб применяется условная величина, номинальное давление PN выраженное в барах, численно равная P_{PMS}

Максимальное рабочее давление при постоянной температуре МОР, МПа — постоянное внутреннее давление воды в трубопроводе в течении срока службы 50 лет.

$$MOP = 2 MRS C_{\cdot} / (C(SDR-1))$$

Где C_t – коэффициент снижения максимального рабочего давления при температуре воды более $20^{\circ}C$.

Максимальное рабочее давление при переменном температурном режиме P_{max} , МПа — при заданных условиях эксплуатации.

$$P_{max} = \sigma_0 / S$$

Где σ_0 — расчетное напряжение в стенке трубы МПа, для заданного класса эксплуатации.

Методика расчета напряжение в стенке σ_0 по правилу Майнера приведена в приложении 1.

3. Требования к надежности трубопроводов и классы эксплуатации.

Трубы, изготавливаемые производственной компанией КОНТУР, могут применяться для строительства трубопроводов различного назначения. Расчетный срок службы трубопроводов из материала PPRC зависит от вида транспортируемой жидкости и ее характеристик: концентрации, давления и температуры.

Для систем водоснабжения и отопления принят ряд максимальных рабочих давлений P_{pa6} , 0,4; 0,6; 0,8 и 1,0 МПа и в зависимости от назначения трубопровода установлены классы их эксплуатации Таблица 3.

Таблица 3

Класс эксплуа- тации	Траб., С	Время при Траб., год	Тмакс., С	Время при Тмакс., год	Тавар., С	Время при Тавар., ч	Область применения
1	60	49	80	1	95	100	Горячее водоснабжение (60 C)
2	70	49	80	1	95	100	Горячее водоснабжение (70 C)
3	30 40	20 25	50	4,5	65	100	Низкотемпературное напольное отопление
4	20 40 60	2,5 20 25	70	2,5	100	100	Высокотемпературное напольное отопление Низкотемпературное отопление отопление приборами
5	20 60 80	14 25 10	90	1	100	100	Высокотемпературное отопление отопительными приборами
XB	-	50	-	-	-	-	Холодное водоснабжение

В таблице приняты следующие обозначения:

Трубы и фитинги, предназначенные для классов эксплуатации 1-5, должны быть пригодными для класса эксплуатации холодное водоснабжение при максимальном рабочем давлении 1.0 МПа.

Выбор серии труб S, определяющий минимальную толщину стенки, для классов эксплуатации 1-5 вычисляется по формуле:

 $[\]mathsf{T}_{\mathsf{pa6}}$ — рабочая температура или комбинация температур транспортируемой воды, определяемая областью применения;

Тмакс – максимальная рабочая температура, действие которой ограниченно по времени;

 $^{{\}sf T}_{\sf авар}$ — аварийная температура, возникающая в аварийных ситуациях при нарушении систем регулирования.

$$S'_{max} = \sigma_0 / P_{max}$$

В таблице 4 приведены расчетные напряжения σ_0 и σ_8 и серии σ_8 для ряда рабочих давлений в трубопроводах (ГОСТ Р 52134-2003).

Максимальное	Кла	cc 1	Кла	Класс 2		Класс 4		Класс 5		Класс ХВ	
рабочее давление Р _{тах} , МПа	σ_{o}	S' _{max}									
0,4		6,9		5,3		6,9		4,8		6,9	
0,6	3,09	5,1	2,13	3,6	3,30	5,5	1,90	3,2	6,93		
0,8	3,03	3,8		2,7		4,1		2,4			
1,0		3,0		2,1		3,3		1,9			

Таблица 4

Трубы, предназначенные для классов эксплуатации 3-5 должны иметь кислородопроницаемость не более 0,1 г/(м 3 сут.). Для данных классов эксплуатации рекомендуется применять армированную алюминиевой лентой трубу (PPR-AL-PPR). Коэффициент линейного теплового расширения такой трубы $\mathcal{C} = 0.05$ мм/м K.

4. Проектирование и монтаж трубопроводов.

Трубы и фитинги, изготовленные ПК КОНТУР из PPRC могут применяться при прокладке технологических трубопроводов для транспортирования жидких и газообразных продуктов. В приложении 2 приведены сведения о химической стойкости материала. Проектирование технологических трубопроводов в каждом конкретном случае должно осуществляться в соответствии с «Инструкцией по проектированию технологических трубопроводов из пластмассовых труб СН 550-82», ОСТ 36-100.309-86, ССБТ «Монтаж технологических трубопроводов. Требования безопасности» и другими ведомственными нормативными документами.

Запрещается прокладка технологических трубопроводов из материала PPRC в помещениях, относящихся по пожарной опасности к категориям A, Б, В.

Нормы проектирования и монтажа трубопроводов для систем водоснабжения содержатся в СНи Π 2.04.01-85 и в сводах правил СП 40-101-96 и СП 40-102-2000.

Напорные трубы, предназначенные для внутренних водопроводов должны соединяться на сварке в раструб, разъемные соединения предусматриваются в местах установки арматуры, присоединений к оборудованию и для возможности демонтажа элементов трубопровода в процессе эксплуатации.

4.1. Компенсация линейного расширения трубопровода

Величина линейного расширения участка трубопровода при открытой прокладке определяется по формуле:

$$\Delta \ell_i = \alpha \cdot L_i \Delta t$$

Где Δt - расчетная максимальная разность температур (между рабочей и при его монтаже).

Для устранения дополнительных напряжений, возникающих при растяжении и сжатии приводящих к сокращению срока эксплуатации трубопровода, используются компенсаторы.

Необходимо различать компенсацию на удлинение и на сокращение трубопровода.

Компенсация линейного расширения может быть реализована путем прокладки трубопровода змейкой и применением компенсирующих элементов. Среди них: отводы (угол 90°С), П - образные и петлеобразные компенсаторы.

Компенсирующая способность углового компенсатора, основанная на изгибе незакрепленного участка трубы (рис. 2) вычисляется по формуле:

$$\int_{n} = \frac{2\sigma}{3E_{0} \cdot d_{H}} \frac{(L_{k} + r)^{3} + 0,007 \cdot r^{3}}{L_{k} + r}$$

- длина прямого участка трубопровода, находящегося между отводом и неподвижной опорой, м;

г - радиус изгиба отвода, м;

расчетная прочность материала, МПа;

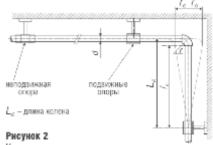
 E_0 - модуль упругости материала, МПа.

Для трубопроводов из малых диаметров труб d<50 мм величина 🛴 может быть определена по упрощенной формуле:

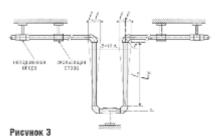
$$\ell_n = 0.001 \cdot L_k^2 / d_n$$

прокладке трубопровода При линейной рекомендуется применять П – образные компенсаторы (рис.3).

Компенсирующая способность П – образных компенсаторов вычисляется по формуле:


$$\ell_{\kappa} = \frac{4\sigma}{E_{\kappa}L_{\kappa}d_{\kappa}}(9.4 \cdot r^{3} + 14.9 \cdot r^{2} \cdot \ell_{\kappa} + 7.8 \cdot \ell_{\kappa}^{2} + 1.3 \cdot \ell_{\kappa}^{3})$$

где Н – вылет компенсатора, м.


При прокладке трубопроводов малых диаметров можно принимать, что

$$\ell_x = 0.001 \cdot L_x^2 / d_H$$

Для компенсации линейного расширения трубопроводов диаметром d<40мм применяться петлевые компенсаторы (рис. 4).

Компенсационное колено

П-образные компенсаторы

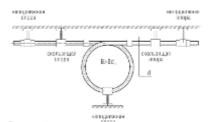


Рисунок 4 Петлевой компенсатор

Максимальное значение компенсации линейного расширения петлевым компенсатором приведены в таблице 8.

Таблица 8

Диаметр труб d п, мм	Компенсирующая способность, мм
20	80
25	65-70
32	55
40	45

При монтаже петлевого компенсатора необходимо создать предварительное линейное напряжение сжатием его в случае эксплуатации при повышенных температурах или растяжением при пониженных температурах.

4.2. Прокладка трубопроводов

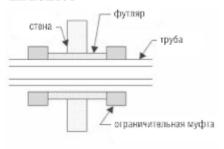
Прокладка трубопроводов может выполняться: открытой, под штукатуркой, в грунте, шахтах или каналах (СНиП 2.04.01-85*, СНиП 21-01-97).

Трубопроводы из материала PPRC должны быть защищены от ультрафиолетового излучения (попадания прямых солнечных лучей).

Крепление трубопроводов выполняется на кронштейнах, опорах и подвесах. Для защиты от механических повреждений применяется скрытая прокладка трубопроводов: в каналах, бороздах и строительных конструкциях, внутри шахт и в грунте (бесканальная прокладка).

При проходе через стену трубы должны быть защищены от механических повреждений из-за трения ее о шероховатые поверхности или сдавливания. Следует различать два случая:

- труба неподвижна в стене при эксплуатации . 5
- труба скользит в футляре, закрепленном в стене . 6.


Для фиксации трубы в стене применяются муфты и ограничительные элементы (рис.6, изготовленные из более мягких пластмасс (поливинилхлорида или полиэтилена).

В случае посадки трубы с трением скольжения в футляре необходимо принимать меры по защите ее от царапин: использование мягких пластмасс для изготовления футляра, набивки волокнистых материалов в зазор между трубой футляра и трубопровода.

Для исключения возможности распространения пожара через стены или перекрытия по трубам применяются отсекатели огня и пожарные преграды. Противопожарные преграды устанавливаются с каждой стороны стены, а при проходе через перекрытия — только с нижней стороны, с верхней стороны устанавливается огнезащитная плита.

Противопожарная преграда представляет собой манжету из вспучивающего материала при сильном нагреве. Компоненты материала расширяются и заполняют проход (в том числе и внутри трубы). В отверстия в стене (перекрытия) для труб противопожарная преграда устанавливается на глубину 90мм.

Количество опорных точек крепежа трубопровода зависит от температуры и плотности перекачиваемой жидкости, серии и диаметра труб. В таблице 9 приведены рекомендуемые значения расстояний между креплениями горизонтального трубопровода в зависимости от температуры теплоносителя (воды или гликоля). При вертикальной прокладке эти расстояния можно увеличить приблизительно на 30%. Расстояния между опорными точками трубопровода из стабилизированной трубы приведено в таблице 9.

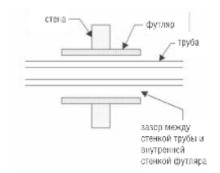
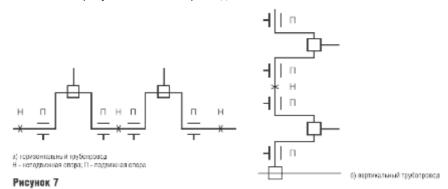



Рисунок 5

Таблица 9

Серия S (стандартное	Диаметр трубопро-	Расстояние между опорными точками, см Температура теплоносителя, С					
размерное отношение	Вода, мм			гемпература те	еплоносителя, С		
SDR)		20	30	40	50	60	80
S 2,5 SDR 6	20 25 32 40 50 63 75 90 110	95 100 120 130 150 170 185 200 220	90 100 115 130 150 160 180 200 215	85 100 115 125 140 155 175 185 210	85 95 110 120 130 150 160 180	80 90 100 115 125 145 155 175	70 85 90 100 110 125 140 150 165
S 3.2 SDR 7.4	20 25 32 40 50 63 75 90 110	90 95 110 120 135 155 170 180 200	80 95 105 120 130 150 165 180 195	80 95 105 115 125 145 160 170	80 90 100 110 120 135 150 165 180	70 80 95 105 115 130 145 160	65 75 80 95 100 115 125 135 155
S 5 SDR 11	20 25 32 40 50 63 75 90 110	80 85 100 110 125 140 155 165 185	75 85 95 110 120 135 150 165 180	70 85 95 105 115 130 145 155	70 80 90 100 110 125 135 150	65 75 85 95 105 120 130 154 160	60 70 75 85 90 105 115 125 140

В случае применения Π – образных компенсаторов на трубопроводах рекомендуются показанные на рисунке 7 способы прокладки.

При прокладке трубопровода под штукатуркой необходимо создать свободное пространство в каналах для движения труб из-за линейного расширения и защитить их от механических повреждений. Для защиты труб от механических повреждений рекомендуется применять теплоизоляцию из вспененного полиэтилена. Разрешается производить заливку трубопроводов из PPRC в бетонных стяжках при наличии теплоизоляции. Следует отметить, что трубы из PPRC не рекомендуется применять в системах «теплый пол» из-за низкой теплопроводности материала.

4.3. Соединение труб при монтаже.

Соединение труб способом полиффузной сварки осуществляется при условии, что материалы находятся в одной группе (PPR – 80) и в одном классе свариваемости. Класс свариваемости определяется на основе индекса текучести расплава гранулята (MTI) и практически не зависит от производителя сырья.

Для выполнения сварочных работ необходим следующий набор инструмента и расходных материалов:

- полиффузионный сварочный аппарат;
- полиффузионные насадки (для каждого диаметра трубы пара);
- контактный термометр;
- труборез и ножницы;
- центрирующее приспособление для сваривания труб больших диаметров;
- зачистной инструмент для труб, армированных алюминием;
- монтажный нож с коротким лезвием;
- рулетка измерительная;
- ветошь хлопчатобумажная;
- технический спирт (изопропиловый, этиловый).

Полиффузионные сварочные аппараты различаются по мощности в зависимости от размеров труб, которые ими сваривают. Так, например сварочный аппарат мощностью 600Вт комплектуется насадками от 20мм до 40мм. Для 800Вт комплект увеличивается до 63мм, а аппаратом мощностью 1200Вт можно монтировать трубы до 110мм. Сварочные насадки снаружи имеют специальное тефлоновое покрытие, предотвращающее прилипание полипропилена к насадке при нагреве трубы и фитингов. Размеры рабочей области насадок (рис. 5) стандартизированы при температуре 260°С и перед их использованием для сварки необходимо проверить соответствие размеров, приведенным в Таблице 10.

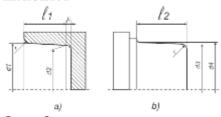


Рисунок 5 Полифузионные накладки

Таблица 10

Диаметр трубопровода d, мм	d 1	d 2	d 3	d 4	lı	l2	r
20	20.15	19.94	19.40	19.65	12.0	14.0	2.5
25	25.15	24.92	24.37	24.65	13.0	15.0	2.5
32	32.15	31.90	31.34	31.65	14.5	16.5	3.0
40	40.15	39.88	39.31	39.65	16.0	18.0	3.0
50	50.20	49.84	49.22	49.65	18.0	20.0	3.0
63	63.20	62.78	62.22	62.70	24.0	24.0	4.0
75	75.25	74.57	73.67	74.98	26.0	26.0	4.0
90	90.30	89.54	88.61	90.05	29.0	29.0	4.0
110	110.30	109.45	108.48	110.10	32.5	32.5	4.0

4.4. Последовательность выполнения операций при сварке.

- Закрепить насадки на сварочный аппарат и очистить их от жира и остатков материала. Для обезжиривания использовать спирт и ветошь. Включить аппарат в розетку с напряжением 220В, 50Гц. Подождать, пока установится температура на насадках. С помощью контактного термометра проверить температуру насадок. Она должна быть 260[±]5°С. В случае, если температура отличается от заданной необходимо отрегулировать термостат и замеры повторить. Подтянуть ключом крепление насадок.
- 2. Отрезать трубу под прямым углом к оси с помощью ножниц или трубореза. Удалить заусенцы ножом или специальным приспособлением. На трубах диаметром более 40 мм снять наружную фаску с трубы под углом 30-40°.
- 3. На конце трубы отметить карандашом глубину сваривания.
- 4. На трубе армированной алюминиевой фольгой на глубину сваривания удалить фольгу с помощью зачистки соответствующего диаметра. Фольга удаляется только на глубину сваривания.
- 5. Тщательно обезжирить и очистить от грязи свариваемые поверхности трубы и фитинга.
- 6. Одновременно вставить трубу и фитинг в нагревательные насадки на сварочном аппарате. Вращать трубу и фитинг при этом категорически ЗАПРЕЩЕНО, т.к. это может привести к отрыву нагретого слоя полипропилена от основы.

7. Нагреть свариваемые детали в течении времени, указанного в таблице 12. Время нагрева исчисляется с момента, когда труба и фитинг установлены в насадки на заданную глубину.

Нагретые детали, не крутя их вытащить из нагревательных насадок и вставить друг в друга на отмеченную глубину сваривания. Вокруг свариваемого шва должно образоваться утолщение (бурт). Проверить соосность трубы и фитинга. Зафиксировать соединение на время частичного охлаждения. В течении времени частичного охлаждения не допускаются любые механические нагрузки на сваренный шов. Полная нагрузка на соединение допускается не ранее 30 минут после сварки.

8.

Таблица 12

Наружный диаметр трубы, мм	Глубина сваривания, мм	Время нагрева, с	Максимальное время на коррекцию шва, с	Время частичного охлаждения, мин
20	14	5	4	2
25	15	7	4	2
32	17	8	6	4
40	18	12	6	4
50	20	18	6	4
63	26	24	8	6
75	29	30	8	8
90	32	40	8	8
110	35	50	8	8

Примечание: при температуре воздуха ниже $+5^{\circ}$ С время нагрева должно быть увеличено на 50%. При этом температура соединяемых деталей не должна быть менее $+5^{\circ}$ С.

При сборке соединения не следует вставлять трубу в деталь слишком глубоко из-за возможности образования сужения или даже закупорки трубы. Для сварки трубопроводов диаметрами более 40мм рекомендуется применять сварочные приспособления — центраторы, обеспечивающие высокую точность соосности стыка и глубину посадки. При сваривании труб диаметром 75мм и более использование центраторов обязательно.

В таблице 11 приведены возможные дефекты сварных соединений и причины их возникновения.

Таблица 12

Свойство	Описание дефекта	Причина возникновения
	Бурт отделен от сварочного шва или отсутствует с одной или обеих сторон	Очень высокая температура нагрева насадок. Чрезмерная длина насадок. Недопустимые отклонения по времени нагрева материала.
	Малая высота бурта или его отсутствие с одной или обеих сторон шва	Очень малое время нагрева. Очень низкая температура нагрева насадок. Наружный диаметр трубы или внутренний посадочный диаметр фитинга выше допустимого.
	Слоистая форма бурта или его отсутствие(в части или по всей длине сварочного шва)	Попадание грязи в соединение. Некачественная обработка свариваемых поверхностей. Чрезвычайно высокая температура нагрева наконечников.
300	Косой стык	Не выдержана соосность трубы и фитинга при сварке. При монтаже трубопровода допускается отклонение от оси не более 0,2%.
труба филинг	Деформация или овальность краев трубы или фитинга после сваривания	Неправильная фиксация трубы или фитинга или непригодно зажимное приспособление.
	Недостаточная длина сварочного шва в следствии неполной или частичной плавки материала	Малое время нагрева материала. Конец трубы не обрезан под прямым углом. Низкая температура нагрева насадок. Осевое смещение при охлаждении соединения. Превышение времени стыковки соединения.
	Образование пустот в сварном соединении	Повреждение поверхности трубы. Превышение отклонений в размерах трубы и (или) фитинга. Смещение по оси соединения.
	Неполное сваривание	Термическое повреждение материала. Загрязнение соединяемых поверхностей. Несовместимость свариваемых материалов. Остатки материала на насадках (пригар).
	Сужение прохода в месте сварки	Высокое давление при соединении стыка. Превышено время нагрева материала. Высокая температура свариваемого материала.
Δx	Поры и наличие примесей в шве соединения	Попадание влаги или растворителя в стык при сварке. Загрязнение нагревательных насадок.

4.5. Применение резьбовых соединений.

При монтаже трубопроводов могут применяться следующие виды резьбовых соединений:

- переходник с впаянной в пластик латунной втулкой с внутренней и наружной трубной резьбой;
- разборное соединение с накидными гайками;
- разборные соединения с накидными фланцами.

Переходники с впаянными латунными резьбовыми втулками.

Переходник с резьбовой втулкой приваривается к трубам способом полиффузной сварки. Уплотнение резьбы производится с использованием фторопластовой ленты (ФУМ), или другими полимерными уплотнителями. Использование таких материалов как лен или пакля не допускается.

При соединении резьбовой части переходника с резьбой ответной детали необходимо использовать специальный ленточный ключ, обеспечивающий обхват по всей окружности фитинга. Не допускается применять большое усилие при монтаже резьбовых фитингов из-за опасности отрыва пластиковой части фитинга от металлической. Также, если ответная резьба не соответствует стандартным размерам (в «плюсе» или в «минусе»), то это может привести либо к разрушению металлической вставки в фитинге, либо к срыву резьбового соединения.

В случае применения фитингов других производителей необходимо проверить:

- марку полимерного материала (PPRC) и его индекс текучести расплава;
- материал металлической втулки (обычно это никелированная латунь ЛС 59-1). Применение стальных втулок не допускается.
- надежность соединения металл-пластик при механических нагрузках и тепловом расширении.

Фитинги с латунными вставками запрещено применять при прокладке трубопроводов, предназначенных для транспортировки коррозионно-активных жидкостей (хлорированная вода, растворы солей, кислоты и т.д.).

Разборные соединения с накидными гайками.

Разборные соединения применяются для подсоединения различной арматуры (насосы, краны, расходомеры, контрольно-измерительные приборы и т.д.) к системе трубопровода. А также, для возможности отсоединения части трубопровода (например, для его замены), не разбирая всю систему. Производственная компания КОНТУР комплектует свои разборные соединения силиконовыми кольцевыми прокладками, обеспечивающими высокую термическую стойкость и эластичность в течении всего срока службы трубопровода.

Разборные соединения с накидными фланцами.

Данные соединения предназначены для подключения полипропиленового трубопровода диаметром 50 -110мм к другим видам труб и запорной арматуры с размером от dy40 до dy100. Размеры соответствия полипропиленовых фланцевых соединений и ответных стальных фланцев приведены в таблице 14.

Таблица 14

Диаметр фланцевого соединения PPR, мм	Соответствие размеру стального фланца, Ду
d40	Ду32
d50	Ду40
d63	Ду50
d75	Ду65
d90	Ду80
d110	Ду100

4.6. Испытание трубопроводов давлением.

Все смонтированные трубопроводы должны быть подвергнуты испытаниям давлением согласно СНиП 3.05.01-75, СП 40-101-96, СП 40-102-2000.

Напорные трубопроводы испытываются на прочность и герметичность гидравлическим и пневматическим способом. Предварительные испытания на прочность выполняются после завершения всех работ на данном участке трубопровода. Гидравлические испытания трубопроводов должны производиться при температуре в здании не менее +5°C. Температура воды используемой при проведении испытаний должна быть также не ниже +5°C. Заполнение смонтированного трубопровода водой может осуществляться не ранее чем через 2 часа после сварки последнего соединения, а испытания – не ранее, чем через 16 часов.

Предварительные гидравлические испытания.

Предварительные гидравлические испытания производятся в следующей последовательности:

- Трубопровод заполняется водой, стравливаются остатки воздуха и выдерживается без давления в течении 2-х часов;
- 2. В трубопроводе создается испытательное давление (P_{во}) и оно поддерживается в течении 0,5 часа;
- Испытательное давление снижается до расчетного (Р_{мм}) и производится осмотр трубопровода.

Испытательное давление принимается равным $P_{\text{\tiny MEM}}$ =1,5 $\cdot P_{\text{\tiny MEM}}$, где

(Р, - максимальное рабочее давление при эксплуатации трубопровода.

Предварительные испытания трубопровода считаются положительными, если под испытательным давлением не обнаружены разрывы труб, стыков и соединительных деталей ,а под рабочим давлением не обнаружены видимые утечки воды.

Окончательные гидравлические испытания.

Окончательные гидравлические испытания проводятся в следующей последовательности:

- в трубопроводе создается давление и поддерживается в течении 2-х часов, а при падении давления на 0,02 МПа производится подкачка воды;
- давление поднимается до уровня испытательного $P_{\rm m}$ за период не более 10 минут и поддерживается в течении 2-х часов.

Пневматические (манометрические) испытания.

Пневматические (манометрические) испытания трубопроводов, выполненных из полимерных материалов, производятся только при наземной и надземной их прокладке в следующих случаях:

- применение воды недопустимо по техническим причинам;
- вода в необходимом количестве отсутствует;
- Температура окружающего воздуха ниже 0°C.

Порядок проведения пневматических испытаний и требования безопасности при проведении работ должны содержаться в проекте на трубопровод.

5. Транспортирование и хранение.

Трубы и фитинги перевозятся любым видом транспорта в соответствии с правилами перевозки грузов и техническими условиями погрузки и крепления грузов. При перевозке трубы необходимо укладывать на ровную поверхность транспортных средств, предохраняя от острых металлических углов и ребер платформы. При

температуре воздуха ниже -10° С необходимо применять особые меры предосторожности (трубы не изгибать, не бросать и не придавливать тяжелыми предметами).

Трубы и фитинги необходимо защищать от механических повреждений, солнечного излучения, действия тепла (минимальное расстояние от отопительных приборов и неизолированных трубопроводов не менее 1,0м), органических растворителей и атмосферных осадков.

Места хранения труб должны быть ровными, трубы должны быть уложены по всей длине, высота слоя не должна превышать 1,2м. перетаскивать и бросать трубы запрещается. Обращаться с материалом PPRC при температуре окружающего воздуха ниже -5° C необходимо с повышенной осторожностью. Царапины, возникшие вследствие неправильного хранения или транспортировки, могут являться причиной возникновения трещин.

Трубы должны храниться на стеллажах в закрытых помещениях или под навесом. Высота штабеля при кратковременном хранении труб не должна превышать 2-х метров.

Трубы и фитинги, находившиеся в условиях низких температур, до начала монтажа должны быть выдержаны при положительной температуре не менее 2-х часов.

Трубы и фитинги «КОНТУР».

Труба PN10

D, mm	t, mm	L, mm	Упак. м	Вес, гр/м
20	2,2	4000	200	110
25	2,3	4000	140	159
32	2,9	4000	100	253
40	3,7	4000	60	398
50	4,6	4000	40	625
63	5,8	4000	20	981
75	6,8	4000	12	1380
90	8,2	4000	8	1980
110	10,0	4000	8	2950

Труба PN20

D, mm	t, mm	L, mm	Упак. м	Вес, гр/м
20	3,4	4000	200	167
25	4,2	4000	140	261
32	5,4	4000	100	424
40	6,7	4000	60	653
50	8,3	4000	40	1020
63	10,5	4000	20	1620
75	12,5	4000	12	2300
90	15,0	4000	8	3400
110	18,3	4000	8	5000

Труба армированная

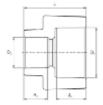
PPR-AL-PPR PN 25

D, mm	D1, mm	t, mm	L, mm	Упак. м	Вес, гр/м
20	21,9	3,4	4000	200	232
25	26,9	4,2	4000	140	335
32	33,9	5,4	4000	100	506
40	41,9	6,7	4000	60	786
50	52,0	8,3	4000	40	1187
63	65,0	10,5	4000	20	1852

PPR-GF-PPR PN20

D, mm	t, mm	L, mm	Упак. м	Вес, гр/м
20	3,4	4000	160	161
25	4,2	4000	120	250
32	5,4	4000	80	401
40	6,7	4000	40	624
50	8,3	4000	32	972
63	10,5	4000	20	1523

PERT-AL-PPR PN25



D, mm	t, mm	L, mm	Упак. м	Вес, гр/м
20	3,0	4000	200	172
25	3,3	4000	140	242
32	4,0	4000	100	381
40	5,0	4000	60	587
50	5,5	4000	40	835
63	7,0	4000	20	1325

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

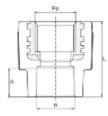
Муфта переходная

D1, mm	D2, mm	A1, mm	A2, mm	L, mm	Упак. шт.	Вес, гр.
25	20	16,0	14,5	32,5	1200	11
32	20	18,0	14,5	35,0	700	19
32	25	18,0	16,0	37,0	600	21
40	20	20,5	14,5	39,0	320	32
40	25	20,5	16,0	40,5	360	33,5
40	32	20,5	18,0	42,5	300	34
50	20	23,5	14,5	42,0	300	43
50	25	23,5	16,0	43,5	300	43
50	32	23,5	18,0	45,5	280	51
50	40	23,5	20,5	47,5	200	55
63	20	27,5	14,5	46,0	150	84
63	25	27,5	16,0	47,5	150	87
63	32	27,5	18,0	50,0	150	93
63	40	27,5	20,5	52,0	150	96
63	50	27,5	23,5	55,0	110	98
75	20	30,0	14,5	49,5	100	185
75	25	30,0	16,0	51,0	100	188
75	32	30,0	18,0	53,0	100	190
75	40	30,0	20,5	55,5	80	195
75	50	30,0	23,5	58,5	80	198
75	63	30,0	27,5	62,5	60	218
90	32	33,0	18,0	61,0	50	240
90	40	33,0	20,5	63,5	50	250
90	50	33,0	23,5	66,5	50	268
90	63	33,0	27,5	70,5	50	278
90	75	33,0	30,0	73,0	50	310
110	40	37,0	20,5	67,5	40	381
110	50	37,0	23,5	70,5	40	392
110	63	37,0	27,5	74,5	40	408
110	75	37,0	30,0	78,0	30	447
110	90	37,0	33,0	81,0	30	595

Муфта соединительная

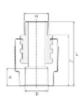
D, mm	A, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	32,0	1400	10,5
25	16,0	35,0	800	16
32	18,0	39,0	480	24,5
40	20,5	44,0	200	41,5
50	23,5	50,0	180	52
63	27,5	58,0	100	116
75	30,0	64,0	96	225
90	33,0	71,0	60	348
110	37,0	79,0	30	548

Муфта комбинированная с наружной резьбой



D, m	R	A, mm	L, mm	L1, mm	Упак. шт.	Вес, гр.
20	1/2"	14,5	53,5	39,0	500	61
20	3/4"	14,5	58,0	40,0	400	87
25	1/2"	16,0	55,5	41,0	400	65
25	3/4"	16,0	59,0	41,0	350	90
25	1"	16,0	60,0	42,0	250	110
32	1/2"	18,0	56,0	42,0	200	90
32	3/4"	18,0	62,0	44,0	200	95
32	1"	18,0	62,5	46,0	200	121
40	1"	20,5	76,0	48,0	160	218
40	1 1/4"	20,5	80,0	48,0	160	320
50	1 1/4"	23,5	82,0	50,0	80	370
50	1 1/2"	23,5	81,6	54,0	80	395
63	2"	27,5	101,0	63,5	50	550

Муфта комбинированная с внутренней резьбой

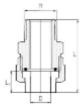


,							
	D, mm	Rp	A, mm	L, mm	7	/пак. шт.	Вес, гр.
	20	1/2"	14,5	39,0		600	51
	20	3/4"	14,5	40,0		500	68
	25	1/2″	16,0	41,0		480	56
	25	3/4"	16,0	41,0		400	70
	25	1"	16,0	42,0		250	92
	32	1/2″	18,0	42,0		220	71
	32	3/4"	18,0	44,0		220	80
	32	1"	18,0	46,0		220	116
	40	1"	20,5	48,0		200	216
	40	1 1/4"	20,5	48,0		160	220
	50	1 1/4"	23,5	50,0		80	240
	50	1 1/2"	23,5	54,0	-	80	330
	63	2″	27 5	63 5		50	507

Муфта комбинированная с наружной резьбой под ключ

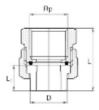
D, mm	R	A, mm	L, mm	L1, mm	Упак. Вес, шт. гр.
32	1"	18,0	67,5	52,0	200 191
40	1 1/4"	20,5	75,0	54,0	160 307
50	1 1/2"	23,5	89,6	62,0	80 376
63	2″	27,5	111,0	73,5	50 595
75	2 1/2"	30,0	129,0	85,0	30 925

ПК КОНТУР


Муфта комбинированная с внутренней резьбой под ключ

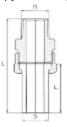
D, mm	Rp	A, mm	L, mm	Упак. шт.	Вес, гр.
32	1"	18,0	52,0	220	158
40	1 1/4"	20,5	54,0	160	251
50	1 1/2"	23,5	62,0	80	365
63	2″	27,5	73,5	50	530
75	2 1/2"	30,0	85,0	30	725

Муфта разъемная (американка) с наружной резьбой



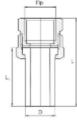
D, mm	R	A, mm	L, mm	L1, mm	Упак. шт.	Вес, гр.
20	1/2″	14,5	50,0	18,0	250	101
20	3/4"	14,5	54,0	18,0	200	115
25	3/4"	16,0	59,0	20,0	200	144
25	1"	16,0	64,0	20,0	120	172
32	1"	18,0	68,0	23,0	100	249
32	1 1/4"	18,0	74,0	23,0	80	324
40	1 1/4"	20,5	78,0	26,0	80	240
50	1 1/2"	23,5	85,0	28,0	60	400
63	2"	27,5	89,0	32,0	40	630

Муфта разъемная (американка) с внутренней резьбой



D, mm	Rp	A, mm	L, mm	L1, mm		Упак. шт.	Вес, гр.
20	1/2"	14,5	36,0	18,0		250	94
20	3/4"	14,5	38,0	18,0		200	103
25	3/4"	16,0	43,0	20,0		200	131
25	1"	16,0	50,0	20,0		100	143
32	1"	18,0	52,0	23,0		100	234
32	1 1/4"	18,0	54,0	23,0		80	233
40	1 1/4"	20,5	58,0	26,0		80	238
50	1 1/2"	23,5	63,0	28,0	•	60	390
63	2″	27,5	64,0	32,0		40	630

Американка трубная с наружной резьбой



D, mm	R	L, mm	L1, mm	Упак. Вес, шт. гр.
20	1/2″	77,0	40,0	250
20	3/4"	79,0	40,0	200
25	1/2"	79,0	40,0	250
25	3/4"	80,0	40,0	200
32	3/4"	82,0	42,0	200
32	1"	92,0	45,0	100

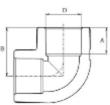
Американка трубная с внутренней резьбой

D, mm	Rp	L, mm	L1, mm	Упак. Вес, Шт. гр.
20	1/2"	60,0	40,0	250
20	3/4"	62,0	40,0	200
25	1/2"	62,0	40,0	250
25	3/4"	64,0	40,0	200
32	3/4"	66,0	42,0	200
32	1"	70,0	45,0	100

Муфта комбинированная с накидной гайкой и латунной вставкой

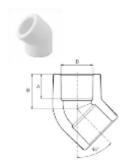
D, mm	G	A, mm	L, mm	Упак. Шт.	Вес, гр.
20	1/2″	14,5	40,0	300	75
25	3/4"	16,0	41,0	200	102

ΗP


D, mm	G	A, mm	L, mm	Упак. Шт.	Вес, гр.
20	1/2"	14,5	40,0	90	170
25	3/4"	16,0	41,0	70	210

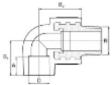
D, mm	G	A, mm	L, mm	Упак. Шт.	Вес, гр.
20	1/2"	14,5	40,0	90	160
25	3/4"	16,0	41,0	60	214

Угольник соединительный 90°



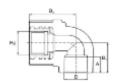
D, mm	, mm	B, mm	Упак. Шт.	Вес, гр.
20	14,5	26,8	1000	15
25	16,0	31,0	540	24
32	18,0	36,5	300	39
40	20,5	43,0	150	77
50	23,5	51,0	90	114
63	27,5	61,5	58	236
75	30,0	70,0	33	467
90	33,0	82,0	24	635
110	37,0	95,0	20	1200

ПК КОНТУР


Угольник соединительный 45°

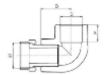
D, mm	A, mm	B, mm	Упак. шт.	Вес, гр.
20	14,5	21,0	1000	14
25	16,0	24,0	600	24
32	18,0	27,0	340	38
40	20,5	32,0	200	61
50	23,5	37,0	90	110
63	27,5	43,0	58	225
75	30,0	48,0	33	310
90	33,0	54,0	24	460
110	37,0	67,0	20	790

Угольник комбинированный с наружной резьбой



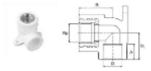
D, mm	R	A, mm	B1, mm	B2, m	Упак. шт.	Вес, гр.
20	1/2"	14,5	27,0	35,0	360	65
20	3/4"	14,5	27,0	39,0	250	82
25	1/2"	16,0	31,0	36,0	300	77
25	3/4"	16,0	31,0	39,0	240	98
32	3/4"	18,0	36,0	40,0	240	120
32	1"	18,0	36,0	42,0	160	155
40	1 1/4"	20,5	42,0	48,0	80	250

Угольник комбинированный с внутренней резьбой

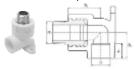


D, mm	Rp	A, mm	B1, mm	2, mm	Упак. шт.	Вес, гр.
20	1/2"	14,5	27,0	35,0	400	51
20	3/4"	14,5	27,0	39,0	280	70
25	1/2"	16,0	31,0	36,0	300	65
25	3/4"	16,0	31,0	39,0	280	78
32	3/4"	18,0	36,0	40,0	250	101
32	1"	18,0	36,0	42,0	150	145
40	1 1/4"	20,5	42,0	48,0	100	220

Угольник с накидной гайкой



D, mm	G	A, mm	B, mm	Упак. шт.	Вес, гр.
20	1/2"	14,5	27,0	280	80
25	3/4"	16,0	31,0	250	108


D, mm	G	A, mm	B, mm	Упак. шт.	Вес гр.
20	3/4"	14,5	27,0		
25	1"	16,0	31,0		
32	1 1/4"	18,0	36,5		

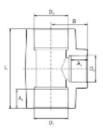
Угольник с креплением с внутренней резьбой

D, mm	Rp	A, mm	B1, mm	B2, mm	Упак. шт.	Вес, гр.
20	1/2″	14,5	34,0	27,0	280	53
25	1/2″	16,0	40,0	32,0	250	65

Угольник с креплением с наружной резьбой

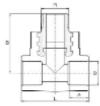
D, mm	R	A, mm	B1, mm	B2, mm	Упак. шт.	Вес, гр.
20	1/2"	14,5	34,0	27,0	280	58
25	1/2"	16,0	40,0	32,0	250	70

Тройник соединительный



D, mm	A, mm	B, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	27,0	54,0	720	18,5
25	16,0	32,0	60,0	400	30,5
32	18,0	36,0	70,0	240	50
40	20,5	39,0	86,0	100	90
50	23,5	51,0	102,0	90	128
63	27,5	62,0	123,0	48	290
75	30,0	70,0	140,0	40	545
90	33,0	83,0	166,0	25	825
110	37,0	99,0	198,0	10	1340

Тройник соединительный переходный



D1, mm	D2, mm	D 3, mm	A1, mm	A2, mm	B, mm	L, mm	Упак. шт.	Вес, гр.
25	20	25	16,0	14,5			480	24,5
32	20	32	18,0	14,5			320	36
32	25	32	18,0	16,0			240	40
40	20	40	20,5	14,5			200	63
40	25	40	20,5	16,0			200	70
40	32	40	20,5	18,0			180	77
50	20	50	23,5	14,5			120	84
50	25	50	23,5	16,0			120	94
50	32	50	23,5	18,0			120	98
50	40	50	23,5	20,5			90	110
63	20	63	27,5	14,5			70	155
63	25	63	27,5	16,0			70	167
63	32	63	27,5	18,0			60	187
63	40	63	27,5	20,5			60	207
63	50	63	27,5	23,5			50	230
75	25	75	30,0	16,0			40	300
75	32	75	30,0	18,0			40	320

75	40	75	30,0	20,5		40	350
75	50	75	30,0	23,5		40	400
75	63	75	30,0	27,5		40	430
90	40	90	33,0	20,5		30	550
90	50	90	33,0	23,5		30	580
90	63	90	33,0	27,5		25	610
90	75	90	33,0	30,0		25	700
110	50	110	37,0	23,5		10	850
110	63	110	37,0	27,5		10	870
110	75	110	37,0	30,0	•	8	1000
110	90	110	37,0	33,0		8	1100

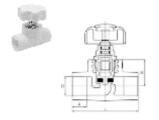
Тройник комбинированный с наружной резьбой

D, mm	R	A, mm	B, mm	L, mm	Упак, шт.	Вес, гр.
20	1/2"	14,5	48,5	52,0	300	70
20	3/4"	14,5	50,0	52,0	240	84
25	1/2"	16,0	51,0	60,0	240	74
25	3/4"	16,0	52,5	60,0	200	86
32	3/4"	18,0	54,0	70,0	200	125
32	1"	18,0	58,0	70,0	110	173
40	1 1/4"	20,5	63,0	78,0	80	385

Тройник комбинированный с внутренней резьбой

D, mm	Rp	A, mm	B, mm	L, mm	Упак. шт.	Вес, гр.
20	1/2"	14,5	34,0	52,0	360	51
20	3/4"	14,5	36,0	52,0	300	60
25	1/2"	16,0	35,0	60,0	280	62
25	3/4"	16,0	38,0	60,0	200	76
32	3/4"	18,0	40,0	70,0	120	115
32	1″	18,0	40,0	70,0	120	135
40	1 1/4"	20,5	43,0	78,0	80	260

Крестовина



D, mm	A, mm	B, mm	Упак. шт.	Вес, гр.
20	14,5	27,0	600	20
25	16,0	32,0	300	36
32	18,0	36,0	180	61
40	20,5	39,0	120	104
50	23,5	51,0	80	185
63	27,5	62,0	50	337

пк контур

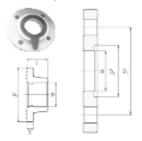
Вентиль проходной

D, mm	A, mm	B, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	28,0	69,0	140	206
25	16,0	30,0	80,0	100	240
32	18,0	39,0	89,0	90	253
40	20,5	41,0	112,0	42	490
50	23,5	48,0	136,0	36	540
63	27,5	60,0	162,0	20	800

Кран шаровой с латунным шаром

D, mm	A, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	65,0	150	150
25	16,0	71,0	100	180
32	18,0	85,0	90	245
40	20,5	100,0	42	480
50	23,5	115,0	36	630
63	27,5	134,0	20	900

Фильтр полипропиленовый (грязевик)


D, mm	A, mm	B, mm	C, mm	D3, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	42,0	14,0	20,0	85,0	150	190
25	16,0	45,0	16,0	25,0	91,0	100	210
32	18,0	52,0	18,0	32,0	105,0	90	280

3аглушка

D, mm	A, mm	L, mm	Упак. шт.	Вес, гр.
20	14,5	18,0	2000	9,1
25	16,0	20,0	1600	13,6
32	18,0	23,5	1000	22
40	20,5	26,5	300	35,5
50	23,5	30,5	200	65
63	27,5	38,0	160	115
75	30,0	42,5	140	190
90	33,0	48,0	85	290
110	37,0	55,0	50	500

Фланцевое соединение

D, mm	D1, mm	D2, mm	d, mm	L, mm	S, mm	Упак. шт.	Вес, гр.
40						200	210
50						160	245
63						140	290
75						80	420
90						50	765
110						40	900

приложение 1

Методика расчета напряжения в стенке трубы σ_{O} .

Методика расчета максимально допустимого напряжения в стенке трубы σ_o .

Расчет максимального допустимого напряжения в стенке трубы σ_0 производится с помощью правила Майнера в последовательности, изложенной в ГОСТР 52134-2003.

 Определяем суммарное годовое повреждение TYD в % по формуле;

$$TYD = \sum a_i/t_i$$
,

где а, – продолжительность воздействия i - ой температуры в процентах в течение года;

- t, продолжительность непрерывного воздействия I, которое труба может выдержать без разрушения.
 - 2. Срок службы трубы вычисляется по формуле:

$$t_{\nu} = 100 / TYD$$

 Определяем σ₀ путем последовательной аппроксимации.

- 3.1. Задаем расчетное напряжение в стенке трубы $\sigma_{\Omega} = N$.
- 3.2. Для рабочей (T_{res}) , максимальной (T_{res}) и аварийной (T_{res}) температур вычисляем значения напряжений с учетом коэффициента запаса прочности соответственно:

$$\sigma_1 = C1 \cdot \sigma_0$$
; $\sigma_2 = C2 \cdot \sigma_0$; $\sigma_3 = C3 \cdot \sigma_0$

- 3.3. Пользуясь графиком или уравнениями приведенными на рисунке 1, определяем времена t₂, t₂ и t₃, которые труба может выдержать при заданных комбинациях напряжения в стенке и температуры в отдельности.
- З.4. Доля повреждения, приходящаяся на год при непрерывном воздействии i - ой температуры соответственно равна 1/t, а при ограниченном времени воздействии – a, /t.
- 3.4. По формулам расчета TYD и t, определяем срок службы трубы.
- В случае существенного отклонения значения t, от расчетного срока эксплуатации трубы значение σ_o изменяется и расчеты по настоящей методике повторяются методом последовательных приближений.

ПРИЛОЖЕНИЕ 2

Химическая стойкость труб и соединительных деталей из сополимера пропилена РР-R

Агрессивная среда	Концентр		EGKAS GT	_
		20*	60"	100*
Ацетальдегид	TR	УC	_	-
Ацетальфенон	TR	C	C	_
Ангедрид уксус, к-ты	TR	C	_	_
Уксуси, к-та разбав.	TR	C	УC	HC
Уксусн. к-та разбав.	40%	C	C	-
Ацетон	TR	C	-	-
Кислотный	40%	C	C	-
ацетангидрид				
Акрилонитрип	TR	C	УC	7-
Адипиновая к-та	TR	0	0	-
Воздух	TR	C	C	C
Сульфат Alaune	GL	C	C	_
Me-Me III				
Аллиповый опирт, разбав.	96%	C	C	-
Квасцы	TR	C	C	-
Хлорид алюминия	GL	C	C	_
Оульфат алюминия	GL	C	C	_
Амбернал к-та	GL	C	C	_
Длузминоэтаноп	TR	C	_	_
Аммиак, газ.	TR	0	C	_
Аумизк, жидк,	TR	C	C	=
Анилин Анилин	TR	C	- 0	=
Аумиак, вода	GL	C	C	_
Русиная, вода Ацетат амуония	GL	C	C	_
	GL.	0	0	-
Карбонат аммония	GL	0	- 0	-
Хлорид аммония			-	-
Флорид амуония	L	C	C	_
Ниграт аммония	GL	C	C	C
Фосфат амиония	GL	C	C	C
Оульфат амиюния	GL.	0	0	C
Ацетат амила	TR	УC	C	_
Амиловый спирт	TR	C	_	C
Анилин	TR	VC.	C	_
Гидроклорид анилина	GL	C:	УC	_
Анон	TR	yc:	0.	_
Анон (циклогекса-энон)	TR	yc.	- yc	HC
Антифриз	H	0	HC	C
Трихлорид антимония	90%	C	C	-
Яблочная к-та	L	C:	C	_
Яблочная к-та	GL	0	C.	-
Яблочное вино (орто)	Н	0	0:	-
Царская водка.	Н	0	C	C
Мышьяковая к-та	40%	C	C	-
Мышьяковая к-та	80%	C	C	VC.
Гидрокоид бария	GL.	C	C	C
Соли бария	GL.	0	0	0
Аккумуляторная к-та	Н	0	C	_
(электралит)	1	C	C	C
Пизо	н			
Альдегид	GL	C	C	-
Смесь бензин-бензол	8090/2009	VC	HC	HC
Бензол	TR	yc yc	HC	HC
	TR		-mu	_
Хлорид бананла		УC	_	-
Бура	L	C	C	-
Борная к-та	GL	C	C	C
Брем	TR	HC	HC	HC
Пары брома	Bce	УC	HC	HC
Бутадиен, гва	TR	yc.	HC	HC

Armanus	Managemen	Химическая ст		
Агрессивная среда	Концентр	20°	60"	
утадиол	TB	С	С	
утантриол (1,2,4)	TB	C	C	
утин(2)диол(1,4)	TB	C	-	
Ацетат бутила	TB	VC	HC	
Бутиловый спирт	TR	C	УC	
			76	
Бутиповый фенал	GL	C	_	
Бутиповый фенал	TR	HC		
утипеновый гликоль	10%	C	VC.	
Бутипеновый гликоль	TB	C	_	
Бутилен, жидк.	TR	90	-	
Сарбонат кальция	GL	C	C	
Спорид кальция	GL	C	C	
идрохлорид кальция	GL	C	C	
ипохлорид кальция	L	0	_	
нтрат кальция	GL.	C	C	
	H	C		
Сарболин	_		-	
Диоксид углерода, ras	Boe	C	C	
ципксид углерода, жидк.	Boe	C	C	
Сарбонимоноксид	Bos	C	C	
Сарбонсульфид	TR	HC	HC.	
Саустиновая сода	50%	C	0	
Спорал	TR	0	C	
Опорамим	L	C	_	
Споротаноп	TB	0	C	
Спорноватая и-та	1%	C	VC	
(порноватая к-та	10%	C	УC	
(порноватая к-та.	20%	C	HC	
		yc.		
(пор	0,5%		140	
(nop	1%	HC	HC	
(nop	GL	УC	HC	
(пор. газ	TR	HC	HC	
(пор., вода	TB .	HC	HC	
(поруксусная к-та	L	C	C	
Спорбенаюл	TB	VC	-	
(порофари	TB	VC	HC.	
Спорсульфоновая к-та	TB	HC	HC	
(ромовая к-та	40%	VC.	УC	
(ромовая к-та/серная к-та вода	15/35/50%	HC	HC	
Сротеновый альделид	TB	C	_	
Тимонная к-та	71.	C	C	
Тимонная к-та	VL.	C	Č	
	H	C	- 0	
ородской газ	TB	0	VC.	
Окосовый жирный спирт			YI.	
Окосовое маспо	TR	C	_	
Оньяк	Н	C	C	
(лорид меди (II)	GL	C	C	
(I) идем динаи	GL	C	C	
(играт меди (II)	30%	C	C	
упьфат меди	GL	C.	C	
Уукуруаное масло	TB	C	VC	
Опсижовое масло	TR	C	0	
(резол	90%	C	C	
(резол	>90%	C	_	
Јиклагексан	TR	C		
Јиклогексанол	TR	C	A.C.	
[иклогексанон	TR	VC.	HC	
Ц екстрин	L	0	0	

ПРИЛОЖЕНИЕ 2 (продолжение)

Химическая стойкость труб и соединительных деталей из сополимера пропилена PP-R

Агрессивная среда	Концентр	Химическая стойкость			
	жанцентр	20"	60°	100*	
1, 2 диаминэтан	TR	C	C	_	
Дихлоруксусная к-тв	TR	yc-	ı —	-	
Диклоруксусная к-та	50%	C	C.	-	
Дихларбензин	TR	YC:	-		
Дикларагилен (1,1-1,2)	TR	yc.	_	-	
Дизельная смазка	Н	C	. VC	_	
Диэтиповый амин	TR	C	1-	-	
Диэтиповый эфир	TR	C	УC	-	
Дигликопиевая к-та	GL	C	C	-	
Дигекски фалалата	TR	C	VC	_	
Ди-исо октипфаталата	TR	C	VC	-	
Ди-исо припилофир	TR	VC.	HC	_	
Диметифориамид	TB	C	0	_	
Диметиловый амин	100%	C	_	_	
Ди-я бутиловый эфир	TR	yc	_		
Динониловый фаталат	TR	C	VC	_	
Диоктиповый фаталат	TR	C	VC		
Диоксан Диоксан	TR	VC.	VC	_	
Питьелая пода	TR	C	0	0	
Этанол	L	0	C	<u> </u>	
		C		_	
Этаноп+2% топуола	96% TR	_	1/0	HC	
Этилацетат	TR	C	VC .	C	
Эгиловый спирт		C	C		
Этиловый бензол	TR	yc.	HG	HC	
Этиловый хлорид	TR	HC:	HC	HC	
Этиленовый диачин	TR:	C	C	_	
Этиленовый гликоль	TR	C	C	C	
Оксид этипена	TR	HC	-	-	
Киспота жирного ряда	20%	C	-	_	
Жирные к-ты > С4	TR:	C	- AC	_	
Бражение солода	Н	C	C.	_	
Соли удобраний	GL	C	C	_	
Пленочная ванна	Н	C	C	-	
Фтер Креинефтеристоводородная	TR 32%	HC	1-	-	
к-та					
Оормальдегид	40%	C	. C	_	
Муравьиная к-та	10%	C	C	УC	
Муравыиная к-та	85%	C	УC	HC	
Фруктова	- 6	C	C	C	
Фруктовые соки	Н	C	C	C	
Фурфуриловый спирт	TB	C	VC	_	
Желатин	L	C	C	C	
Пискоза	20%	C	0	C	
Пицерин	TR	.0	C	Č.	
Гликолиевая к-та	30%	C	VC.	_	
Топленый животный жир	H	yc .	70		
HCI/HN03	76%/25%	HC	HC	HC	
Гептан.	TB	C	VC	HC	
Гентан	TB	C	VC		
V1501		_	1.0	-	
Гексантриол (1,2,6) Гидразингидрат	TR TR	C	С	_	

Агрессивная среда		Xemes	Химическая стойкость		
	Концентр	20" 60" 100			
Фтороводородная к-та	40%	C	УC	HC	
Соляная к-та	20%	C	C	_	
Соляная к-та	20-36%	C	yc.	yc.	
Фтористоводородная к-та	40%	C	C	_	
Фтористоподородная к-та	70%	C	VC.	_	
Волород	TR	C	G	_	
Хлористый водород	TR	C	C	-	
Проксид водорода	30%	C	yc.	_	
Цианистоводородная к-та:	TB	0	C	_	
Сернокислый	12%	C	C	_	
гидрокси-ламмоний					
Подиновый раствор	H	C	VC.	_	
Изорктан	TR	G	VC	HC	
Изопропил	TR	0	C	C	
Керосин	H	C	yc:	HC	
в-оксипропириовая к-та	90%	C	C	-	
Панспин	Н	C	VC.	_	
Ацетат спинца	GL.	G	G	HC	
Пыняное масло	H	G	G	C	
Смазочные масла	TR	G	VC	HC	
Хлорид магния	GL	C	C	C	
Гидроксикарбонат магния	GL	C	HC	HC	
Соли магния	GL	C	C	110	
Супьфат магния	GL	G	G	C	
Ментоп	TR	G-	WG		
Матанол	TR	C	G	-	
Матанол	5%	C	C	yc.	
Метилацетат	TR	č	C	7.0	
Метипацета	32%	G	-	-	
Метипоромия	TR	HC	HG	HC	
	TR	HC	HC:	HC	
Метилхлорид			1.7.0	. Pro	
Матилатилкатон	TR	C	yc .	-	
Ртуть	TRC	0	C	- C	
Соли ртути	GL		C	-	
Молоко	H.	C	C	C	
Минеральная вода	H	C	G	C	
Manacca	H	C	C	-	
Моторное масло	TR	C	УC	-	
Природный газ/Соли никеля	TR/GL	C/C	HC	-	
Азогная к-та	10%	C	УC	HC	
Азотная к-та	10-50%	AC.	HC	HC	
Азотная к-та	>50%	HC	HC	HC	
2-нитрапуол	TR	G	yc.	-	
Азотистыя газы	Bee	C	C	-	
Олеум (Н2504+503)	TR	HC	HC	HC	
Оливковое масло	TR	C	C	УC	
Щазельная к-та	GL	C	C	HC	
Киспорад	TR	C	_	_	
Озон	0,05 ppm	C	YC:	_	
Парафиновые эмульсии	Н	C	C	_	
Парафиновов масло	TR	0	C	HC	

Условные обозначения

С стоект УС условно стоек

НС нестсек

недостаточно информации

Следующие символы описывают химические концентрации

VL концентрация менее 10 % L концентрация более 10 %

GL полная растворимость при 20 °C

Н коммерческая оценка ТВ техническая оценка.